• ISSN 0258-2724
  • CN 51-1277/U
  • EI Compendex
  • Scopus 收录
  • 全国中文核心期刊
  • 中国科技论文统计源期刊
  • 中国科学引文数据库来源期刊

硫酸盐渍土热-质迁移试验与耦合模型

罗崇亮 余云燕 张璟 崔文豪 杜乾中 丁小刚

罗崇亮, 余云燕, 张璟, 崔文豪, 杜乾中, 丁小刚. 硫酸盐渍土热-质迁移试验与耦合模型[J]. 西南交通大学学报, 2023, 58(2): 470-478. doi: 10.3969/j.issn.0258-2724.20220633
引用本文: 罗崇亮, 余云燕, 张璟, 崔文豪, 杜乾中, 丁小刚. 硫酸盐渍土热-质迁移试验与耦合模型[J]. 西南交通大学学报, 2023, 58(2): 470-478. doi: 10.3969/j.issn.0258-2724.20220633
LUO Chongliang, YU Yunyan, ZHANG Jing, CUI Wenhao, DU Qianzhong, DING Xiaogang. Heat-Mass Transfer Test and Coupling Model of Sulfate Saline Soil[J]. Journal of Southwest Jiaotong University, 2023, 58(2): 470-478. doi: 10.3969/j.issn.0258-2724.20220633
Citation: LUO Chongliang, YU Yunyan, ZHANG Jing, CUI Wenhao, DU Qianzhong, DING Xiaogang. Heat-Mass Transfer Test and Coupling Model of Sulfate Saline Soil[J]. Journal of Southwest Jiaotong University, 2023, 58(2): 470-478. doi: 10.3969/j.issn.0258-2724.20220633

硫酸盐渍土热-质迁移试验与耦合模型

doi: 10.3969/j.issn.0258-2724.20220633
基金项目: 甘肃省科技计划资助(22JR5RA325); 甘肃省优秀研究生“创新之星”资助(2022CXZX-528)
详细信息
    作者简介:

    罗崇亮(1992—),男,博士研究生,研究方向为特殊土工程性质与工程应用,E-mail:18219719756@163.com

    通讯作者:

    余云燕(1968—),女,教授,博士生导师,研究方向为岩土与地下工程、土-结构耦合动力学,E-mail:yuyunyan@mail.lzjtu.cn

  • 中图分类号: TU445

Heat-Mass Transfer Test and Coupling Model of Sulfate Saline Soil

  • 摘要:

    为研究西部寒旱区盐渍土传热传质行为,首先,在无压补给条件下进行非饱和硫酸盐渍土的单向冻结试验;其次,考虑结晶潜热、结晶阻抗及结晶消耗等因素,建立非饱和硫酸盐渍土水-热-盐三场耦合模型;最后,采用COMSOL Multi-physics对耦合模型进行数值模拟,将模拟结果与试验数据进行对比分析. 研究结果表明:盐渍土内温度随冻结时长呈三阶段发展,逐步形成上冷下暖的温度梯度;在温度梯度和基质吸力双重驱动下,水、盐向冻结锋位置迁移,冻结锋位置水、盐含量出现峰值,峰值含水率、含盐量相较初始值分别增加2.16%和0.28%;冻结锋沿冻结温度线移动,形成冻结锋面;土柱最大冻结深度约为15.5 cm.

     

  • 图 1  设备装置

    a.冷浴;b.温控箱;c.数据采集仪;d.计算机系统;e.水盐传感器;f.位移计;g.温度传感器;h.马氏瓶无压补给系统;i.盐渍土.

    Figure 1.  Equipment installation

    图 2  溶液补给量变化曲线

    Figure 2.  Variation curve of solution recharge

    图 3  盐渍土柱不同位置温度时程曲线

    Figure 3.  Temperature-time history curves of saline soil samples at different locations

    图 4  不同时刻盐渍土柱等温线分布

    Figure 4.  Isotherm distribution of saline soil columns at different moments

    图 5  冻结96 h土柱含水率分布状况

    Figure 5.  Water content distribution of soil column frozen for 96 h

    图 6  冻结96 h土柱含盐量分布状况

    Figure 6.  Salinity distribution in soil columns frozen for 96 h

    图 7  数值模拟计算程序

    Figure 7.  Calculation program for numerical simulation

    图 8  温度模拟结果与实测值对比

    Figure 8.  Comparison of simulated and measured temperature values

    图 9  导热系数空间分布特征

    Figure 9.  Spatial distribution characteristics of thermal conductivity

    图 10  不同时刻样品模型中温度分布云图

    Figure 10.  Nephogram of temperature distribution in samples at different times

    图 11  土柱液态水含量模拟结果与实测值对比

    Figure 11.  Comparison of simulation and measured liquid water contents in soil columns

    图 12  不同时刻样品中结晶冰含量分布特征

    Figure 12.  Distribution characteristics of crystalline ice content in samples at different moments

    图 13  盐渍土柱不同高度位置浓度时程曲线

    Figure 13.  Time history curves of concentration at different heights of saline soil column

    图 14  不同时刻样品含盐量分布云图

    Figure 14.  Nephogram of salt content distribution of samples at different moments

    图 15  冻结速率和冻结深度时程曲线

    Figure 15.  Time history curves of freezing rate and freezing depth

    表  1  脱盐后土壤物理力学指标

    Table  1.   Physical and mechanical indexes of soil samples after desalination

    参数Gsρmax/(g·cm−3ωopt/%wL/%wP/%CuCc
    取值2.701.7813.725.3512.625.290.59
    下载: 导出CSV

    表  2  模型参数

    Table  2.   Model parameters

    参数数值参数数值
    a02Li/(kJ·kg−1334.6
    m0.15Lc/(kJ·kg−1210
    l0.5Cw/(J·(kg·℃) −14180
    ɵr0.002Ci/(J·(kg·℃) −12090
    ɵs0.397Cc/(J·(kg·℃) −11090
    ks/(m·s−110−6Cs/(J·(kg·℃) −1850
    B0.61λw/(W·(m·K) −10.58
    ρw/(kg·m−31000λi/(W·(m·K) −12.22
    ρi/(kg·m−3918λc/(W·(m·K) −10.14
    ρc/(kg·m−31460λs/(W·(m·K) −11.50
    ρs/(kg·m−32700D0/(m2·h−11.098 × 10−5
    ρd/(kg·m−31600a0.00261
    Mw/(g·mol−1180b10
    Mc/(g·mol−1322α/mm7.021
    下载: 导出CSV
  • [1] ZHANG J, LAI Y M, ZHAO Y H, et al. Study on the mechanism of crystallization deformation of sulfate saline soil during the unidirectional freezing process[J]. Permafrost and Periglacial Processes, 2021, 32(1): 102-118. doi: 10.1002/ppp.2080
    [2] WEISBROD N, NIEMET M R, ROCKHOLD M L, et al. Migration of saline solutions in variably saturated porous media[J]. Journal of Contaminant Hydrology, 2004, 72(1/2/3/4): 109-133.
    [3] 肖泽岸,朱霖泽,侯振荣,等. 盐渍土二次相变温度变化规律[J]. 农业工程学报,2022,38(8): 64-71. doi: 10.11975/j.issn.1002-6819.2022.08.008

    XIAO Zean, ZHU Linze, HOU Zhenrong, et al. Temporal variation in eutectic temperature of pore solution in saline soil[J]. Transactions of the Chinese Society of Agricultural Engineering, 2022, 38(8): 64-71. doi: 10.11975/j.issn.1002-6819.2022.08.008
    [4] 路建国,万旭升,刘力,等. 降温过程硫酸钠盐渍土水-热-盐相互作用过程[J]. 哈尔滨工业大学学报,2022,54(2): 126-134. doi: 10.11918/202102029

    LU Jianguo, WAN Xusheng, LIU Li, et al. Water-heat-salt interaction of sodium sulfate saline soil during a cooling process[J]. Journal of Harbin Institute of Technology, 2022, 54(2): 126-134. doi: 10.11918/202102029
    [5] 张树明,蒋关鲁,杜登峰,等. 新型桩板结构路基在季节冻土区的适用性[J]. 西南交通大学学报,2021,56(3): 541-549.

    ZHANG Shuming, JIANG Guanlu, DU Dengfeng, et al. Applicability of novel pile-plank embankment in seasonally frozen regions[J]. Journal of Southwest Jiaotong University, 2021, 56(3): 541-549.
    [6] 张文,罗艳珍,刘昕,等. 青海盐湖区路基结构层级配及其阻盐效果[J]. 西南交通大学学报,2020,55(6): 1264-1271,1296. doi: 10.3969/j.issn.0258-2724.20190056

    ZHANG Wen, LUO Yanzhen, LIU Xin, et al. Gradation of subgrade soil and its salt-resistance effect in salt lake area in Qinghai[J]. Journal of Southwest Jiaotong University, 2020, 55(6): 1264-1271,1296. doi: 10.3969/j.issn.0258-2724.20190056
    [7] XIE Y L, YU Q H, YOU Y H, et al. The changing process and trend of ground temperature around tower foundations of Qinghai−Tibet power transmission line[J]. Sciences in Cold and Arid Regions, 2019, 11(1): 13-20.
    [8] 罗金明,许林书,邓伟,等. 盐渍土的热力构型对水盐运移的影响研究[J]. 干旱区资源与环境,2008,22(9): 118-123. doi: 10.3969/j.issn.1003-7578.2008.09.023

    LUO Jinming, XU Linshu, DENG Wei, et al. The influence of thermal dynamic structure of saline soil on water and salinity transportation[J]. Journal of Arid Land Resources and Environment, 2008, 22(9): 118-123. doi: 10.3969/j.issn.1003-7578.2008.09.023
    [9] 周凤玺,周立增,王立业,等. 温度梯度作用下非饱和盐渍土水盐迁移及变形特性研究[J]. 岩石力学与工程学报,2020,39(10): 2115-2130.

    ZHOU Fengxi, ZHOU Lizeng, WANG Liye, et al. Study on water and salt migration and deformation properties of unsaturated saline soil under temperature gradient[J]. Chinese Journal of Rock Mechanics and Engineering, 2020, 39(10): 2115-2130.
    [10] XU J, LAN W, REN C, et al. Modeling of coupled transfer of water, heat and solute in saline loess considering sodium sulfate crystallization[J]. Cold Regions Science and Technology, 2021, 189: 103335.1-103335.13.
    [11] ZHANG J, LAI Y M, LI J F, et al. Study on the influence of hydro-thermal-salt-mechanical interaction in saturated frozen sulfate saline soil based on crystallization kinetics[J]. International Journal of Heat and Mass Transfer, 2020, 146: 118868.1-118868.14.
    [12] RICHARDS L A. Capillary conduction of liquids through porous mediums[J]. Physics, 1931, 1(5): 318-333. doi: 10.1063/1.1745010
    [13] HANSSON K, ŠIMUNEK J, MIZOGUCHI M, et al. Water flow and heat transport in frozen soil[J]. Vadose Zone Journal, 2004, 3(2): 693-704.
    [14] YOUNES A. On modelling the multidimensional coupled fluid flow and heat or mass transport in porous media[J]. International Journal of Heat and Mass Transfer, 2003, 46(2): 367-379. doi: 10.1016/S0017-9310(02)00264-8
    [15] 田亚护,刘建坤,钱征宇,等. 多年冻土区含保温夹层路基温度场的数值模拟[J]. 中国铁道科学,2002(2): 59-64. doi: 10.3321/j.issn:1001-4632.2002.02.009

    TIAN Yahu, LIU Jiankun, QIAN Zhengyu, et al. Numerical simulation for temperature field of roadlbed on permafrost with insulation[J]. China Railway Science, 2002(2): 59-64. doi: 10.3321/j.issn:1001-4632.2002.02.009
    [16] XU J, LAN W, LI Y F, et al. Heat, water and solute transfer in saline loess under uniaxial freezing condition[J]. Computers and Geotechnics, 2020, 118: 103319.1-103319.20.
    [17] WANG D Y, LIU J K, LI X. Numerical simulation of coupled water and salt transfer in soil and a case study of the expansion of subgrade composed by saline soil[J]. Procedia Engineering, 2016, 143: 315-322. doi: 10.1016/j.proeng.2016.06.040
    [18] 马敏,邴慧,李国玉. 硫酸钠盐渍土未冻水含量的实验研究[J]. 冰川冻土,2016,38(4): 963-969. doi: 10.7522/j.issn.1000-0240.2016.0110

    MA Min, BING Hui, LI Guoyu. Experimental research on unfrozen water content of sodium sulphate saline soil[J]. Journal of Glaciology and Geocryology, 2016, 38(4): 963-969. doi: 10.7522/j.issn.1000-0240.2016.0110
    [19] 张莎莎,叶素纤,张林,等. 粗粒盐渍土路基水热盐力耦合方程修正及试验验证[J]. 公路交通科技,2020,37(3): 31-40.

    ZHANG Shasha, YE Suqian, ZHANG Lin, et al. Correction of hydrothermal salt force coupled equations for coarse-grained sulphate saline soil roadbed and its experimental verification[J]. Journal of Highway and Transportation Research and Development, 2020, 37(3): 31-40.
    [20] 中华人民共和国交通运输部. 公路土工试验规程: JTG 3430—2020[S]. 北京: 人民交通出版社, 2020.
    [21] 白青波,李旭,田亚护,等. 冻土水热耦合方程及数值模拟研究[J]. 岩土工程学报,2015,37(增2): 131-136. doi: 10.11779/CJGE2015S2026

    BAI Qingbo, LI Xu, TIAN Yahu, et al. Equations and numerical simulation for coupled water and heat transfer in frozen soil[J]. Chinese Journal of Geotechnical Engineering, 2015, 37(S2): 131-136. doi: 10.11779/CJGE2015S2026
    [22] VAN GENUCHTEN M T. A closed-form equation for predicting the hydraulic conductivity of unsaturated soils[J]. Soil Science Society of America Journal, 1980, 44(5): 892-898. doi: 10.2136/sssaj1980.03615995004400050002x
    [23] 牛玺荣. 硫酸盐渍土地区路基水、热、盐、力四场耦合机理及数值模拟研究[D]. 西安: 长安大学, 2006.
    [24] 徐学祖, 王家澄, 张立新. 冻土物理学[M]. 北京: 科学出版社, 2001.
  • 加载中
图(15) / 表(2)
计量
  • 文章访问数:  355
  • HTML全文浏览量:  193
  • PDF下载量:  37
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-09-17
  • 修回日期:  2022-11-18
  • 网络出版日期:  2023-03-06
  • 刊出日期:  2022-12-01

目录

    /

    返回文章
    返回