• ISSN 0258-2724
  • CN 51-1277/U
  • EI Compendex
  • Scopus 收录
  • 全国中文核心期刊
  • 中国科技论文统计源期刊
  • 中国科学引文数据库来源期刊

电动悬浮列车及车载超导磁体研究综述

刘士苋 王磊 王路忠 王秋良

周亚龙, 王旭, 蒋代军, 刘德仁, 何菲, 晏昌, 牛富俊. 青藏铁路接触网异型桩基抗冻拔模型试验研究[J]. 西南交通大学学报, 2024, 59(3): 677-684. doi: 10.3969/j.issn.0258-2724.20220241
引用本文: 刘士苋, 王磊, 王路忠, 王秋良. 电动悬浮列车及车载超导磁体研究综述[J]. 西南交通大学学报, 2023, 58(4): 734-753. doi: 10.3969/j.issn.0258-2724.20220621
ZHOU Yalong, WANG Xu, JIANG Daijun, LIU Deren, HE Fei, YAN Chang, NIU Fujun. Experimental of Anti-Frost Jacking Model of Grotesque Pile Foundations of Overhead Contact System Mast of Qinghai–Xizang Railway[J]. Journal of Southwest Jiaotong University, 2024, 59(3): 677-684. doi: 10.3969/j.issn.0258-2724.20220241
Citation: LIU Shixian, WANG Lei, WANG Luzhong, WANG Qiuliang. Review on Electrodynamic Suspension Trains and on-Board Superconducting Magnets[J]. Journal of Southwest Jiaotong University, 2023, 58(4): 734-753. doi: 10.3969/j.issn.0258-2724.20220621

电动悬浮列车及车载超导磁体研究综述

doi: 10.3969/j.issn.0258-2724.20220621
基金项目: 中国科学院前沿科学重点研究计划(ZDBS-LY- JSC039)
详细信息
    作者简介:

    刘士苋(1997—),男,博士研究生,研究方向为高温超导电动悬浮磁体,E-mail:liushixian@mail.iee.ac.cn

    通讯作者:

    王 磊(1988—),男,副研究员,博士,研究方向为超导电动悬浮技术,E-mail:wanglei@mail.iee.ac.cn

  • 中图分类号: TM26;U266.4

Review on Electrodynamic Suspension Trains and on-Board Superconducting Magnets

  • 摘要:

    电动悬浮列车具有速度高、悬浮间隙大、安全系数高等优点,在超高速磁悬浮列车领域具有十分光明的应用前景. 车载超导磁体是超导电动悬浮列车的核心组成部分之一,其服役可靠性是列车安全运行的重要基础. 本文系统地阐述国内外电动悬浮列车的发展历史及现状,针对国内外电动悬浮系统中车载超导磁体的结构和技术方案进行对比和总结. 高温超导磁体技术已经成为超导电动悬浮领域的重要发展方向,在列车行驶过程中车载超导磁体系统的热稳定性和振动稳定性是影响其可靠服役的重要因素. 高温超导磁体闭环运行技术、轻量小型化低温系统结构设计、高强度低漏热支撑结构设计等将是未来超导电动悬浮系统中车载超导磁体需要重点研究和解决的关键技术难题.

     

  • 青藏铁路的开通对促进青藏高原的交通与经济建设发挥了重要作用. 为进一步提高其运输能力和效益,青藏铁路格拉段电气化工程提上日程. 青藏铁路格拉段穿越青藏高原多年冻土地段546.43 km,地质条件复杂,路基的冻胀融沉病害严重[1-2]. 由于接触网支柱桩基础承担的上部荷载较小且桩长较短,在长期冻融循环约束冻胀作用下易产生冻拔失稳或破坏[3]. 如何保证接触网支柱桩基础的冻拔稳定性是青藏铁路格拉段电气化改造工程中的关键问题[4-5].

    目前,在冻土地基中桩基冻拔方面,国内外学者已通过现场试验、模型试验与数值模拟的方法取得了一定的研究成果:Lu等[6]通过引入关于层状饱和土的状态向量、静态波向量和反射-透射矩阵(RTM)的基本解,建立层状冻土与单桩相互作用的第二类Fredholm积分方程,并对其进行了数值求解;Zhou等[7]采用现场试验与数值模拟的方法研究了热管对青藏高原多年冻土区输电塔基热力学特性的影响;王腾飞等[8-10]研究了季节冻土区光伏支架螺旋桩基础在单向冻结条件下的冻拔响应及半螺旋桩的抗冻拔理论计算方法;为减小桩基冻拔量,锥形桩与扩底桩逐渐被应用于工程实践中,许健等[11-16]采用模型试验、理论分析及数值模拟的方法对冻土区锥形桩与扩底桩的抗冻拔性能及其影响因素进行深入研究,并对扩底桩的优化选型进行总结分析. 上述研究中,桩周土体都产生水平方向的对称冻胀. 然而,铁路接触网支柱桩基是设置于既有路基中的柱型构件,其稳定性受路基与边坡2个方向冷(热)量的共同影响,桩周土体产生水平方向的非对称冻胀. 关于多年冻土区既有路基活动层在二维冻融过程中桩基受力变形方面的研究成果较少.

    鉴于此,本文通过大比例模型试验,对多年冻土区不同桩型的接触网支柱桩基在冻融作用下的相关热力学特性开展研究. 探讨在冻拔作用下等截面圆形桩、直锥柱形桩及曲锥柱形桩的抗冻拔效果,得到接触网支柱桩基础的地温、冻拔位移、切向冻胀力的分布规律,揭示接触网支柱桩基在冻融循环作用下的受力变形机理.

    为更好地体现青藏铁路路基土体对接触网桩基础的影响,试验用土取自青藏铁路沱沱河车站,接触网下部基础钻孔施工试验的现场. 试验土体的最大干密度为1.92 g/cm3,其中,小于0.075 mm粒径的颗粒占5.6%,根据土工试验方法标准(GB/T 50123—2019)[17],该土样定义为含细粒土砂(SF). 试验所用低温环境箱的内尺寸为3.2 m (长) × 1.7 m (宽) × 1.9 m (高). 制作1.6 m (长) × 1.0 m (宽) × 1.0 m (高)的模型箱,置于低温环境箱,模型箱四周均覆盖保温隔热材料. 为模拟多年冻土,采用2个冷浴系统分别模拟控制环境温度与多年冻土层的温度.

    为降低接触网支柱桩基的冻拔力,改变普通等截面圆形桩在活动层的桩基截面形状,本次试验中共设置3种截面形式的模型桩,分别为等截面圆形桩Z1、圆锥柱形桩Z2及曲锥柱形桩Z3. 根据模型试验相似原理,土质、含水量及环境温度与现场实际情况一致,现场接触网支柱桩基预设计桩长8 m,桩径0.55 m. 模型桩采用有机玻璃加工制作,桩身材料的密度、弹性模量与导热系数分别为1.18 g/cm3、2.56 GP和0.19 W/(m·℃). 结合现有的试验条件,将模型试验的几何相似比取为1∶10. 模型桩的具体尺寸及应变片布设见图1所示. 沿桩身同一深度处对称布设BE120-3AA-P300型号应变片,利用同一深度处相同的温度变化来消除温度对应变片的影响,其中一片沿桩身轴向贴在外表面(测量片),另一片沿桩身环向贴于相应的位置(温度补偿片). 在应变采集仪中采用半桥接线法.

    图  1  模型桩几何尺寸及应变片布设示意
    Figure  1.  Geometric dimension of model pile and layout of strain gauge

    试验采用PT100温度传感器测试土体温度,精度为 ± 0.1 ℃. 图2为模型桩及测试元件布设图,温度传感器共布设3个断面,从左到右依次为断面A、断面B与断面C,每个断面有2个测温孔,分别位于路基与边坡上. 环境箱内布设3个环境温度测点. 在桩顶布设2个位移传感器实时测试桩顶的竖向与水平位移,在Z1与Z2桩之间、Z2与Z3桩之间分别布设3个位移计,测试路基、路肩及边坡土体的位移. 根据文献[7]的研究成果,距桩3.4 倍桩径处土体的冻胀位移基本不受桩体影响,故本试验中模型桩之间的相互影响忽略不计.

    图  2  模型桩及测试元件布置
    Figure  2.  Layout of model piles and test elements

    选取青藏高原沱沱河地区一年内正弦气温变化函数为

    Ta(t)=2.5+12.0sin(2πt/8640+π/2)
    (1)

    式中:-2.5为年平均气温,12.0为气温振幅,t为时间,h.

    模型试验共设计3个冻融循环,正式试验前通过多次预试验可得:若时间相似比取1∶10,即模型试验中3.6 d模拟现场的1年,土体的冻融深度达不到30 cm;当时间相似比取1∶6时,冻融深度约为30 cm. 因此,将模型试验的时间相似比取为1∶6,即模型试验中10.0 d模拟现场的1年. 模型试验中环境箱温度按式(2)控制.

    T(t)=2.5+12.0sin(2πt/240+π/2).
    (2)

    试验步骤主要包含:

    步骤1 准备试验. 按试验设计加工制作试验模型箱,模型箱四周均粘贴保温隔热材料,底部设计冷浴管路;按各模型桩的设计尺寸加工有机玻璃模型桩,桩周粘贴布设BE120-3AA-P300型号应变片;将现场取回的土样配备足量含水量为15%的试验用土,将其搅拌充分均匀后用塑料布包裹并静置72 h.

    步骤2 土样分层填筑压实及测设元件布设. 在模型箱内壁涂抹凡士林,以此来消除模型箱边界对土体的约束作用. 试验填土初始含水量15%,分10层填筑,压实度按0.93控制,模型箱内壁粘贴软皮尺以控制土层的填筑厚度,桩身附近的土体采用橡皮锤击实. 填筑过程中,温度及位移传感器按图2进行布设.

    步骤3 模型箱底板与顶板温度的控制. 将底板温度调为−2 ℃恒温控制,顶板调制为10 ℃, 静置30 d,形成初始温度场.

    步骤4 开始试验. 按T(t) 调节环境温度实现土体的冻融变化.

    步骤5 试验数据的自动采集. 自动实时采集冻融循环过程中应变、温度传感器与位移传感器的读数.

    试验中断面ABC的温度场分布基本一致,以断面B桩Z2附近路基与边坡上2个测温孔的温度场进行分析. 图3为断面B路基与边坡测温孔不同深度土层温度随时间的变化曲线,其中第17天的数据缺失. 由图3可以看出:整个试验共进行30.0 d,为3个冻融循环,随着T(t)的变化,不同深度土层温度随时间也呈正弦状分布,能较好地模拟现场实际地温的变化情况;各土层温度的变化相对于环境温度出现滞后现象,且随深度的增加,滞后效应越明显;下冷板能较好地控制模型下部土层的地温,路基与边坡2个测温孔深90 cm处的平均地温约为−1.5 ℃ .

    图  3  断面B不同深度土体温度随时间的变化曲线
    Figure  3.  Changes of soil temperature at different depths of section B with time

    通过试验进程中所得的各测点温度,绘制冻融过程中断面B路基与边坡处的等温线分布,如图4所示. 由图可得:试验开始阶段,模型箱底部20 cm 厚的土层处于冻结状态,其他土层都为未冻土,随着环境温度的降低,基础与土体的热量向环境中扩散,冻结锋面下移,土层主要发生自上而下的冻结. 经过一个冻结期后,整个基础完全处于冻结状态. 随着环境温度的升高,模型上部土层融化,路基测温孔第2、3个周期的最大融化深度分别为31.5 cm和28.0 cm,边坡测温孔第2、3个周期的最大融化深度分别为17.0、14.0 cm.

    图  4  冻融过程中断面B的等温线分布(单位:℃)
    Figure  4.  Isotherm distribution of section B during freezing and thawing (unit: ℃)

    图5为路基与边坡2个测温孔地温沿深度变化的对比曲线. 由图可以看出:冻土上限以上活动层地温正负温变化较剧烈,其中第11、12、19、20 天活动层地温为正值,呈融化状态,第16天活动层地表地温最低,达到 −8.1 ℃. 通过比较2个测温孔的地温数值,发现相同时间同一深度处2个测温孔的数据存在较大的差异,在暖季阶段,边坡测温孔的地温比相同条件下路基测温孔的地温较高;在寒季阶段,边坡测温孔的地温比相同条件下路基测温孔的地温较低,且在活动层内这种现象愈剧烈. 以上说明路基体的冻结(融化)受路基顶面与边坡的2个方向冷(热)量的共同影响,是一个二维冻结(融化)问题,接触网支柱基础路基与边坡两侧的温度场是非对称分布的.

    图  5  断面B 2个测温孔地温沿深度变化的对比
    Figure  5.  Comparison of ground temperature variation along depth between two temperature measuring holes at section B

    第1个周期,由于土层的填筑与环境箱内初始温度等因素的影响,试验数据的变化规律相对杂乱,在下面的分析中以第10天为起点. 图6(a)为路基、路肩及边坡处土体表层的位移随时间的变化曲线. 由图可知:路基、路肩及边坡处位移变化趋势基本一致,都与环境温度的变化密切相关. 当环境温度为正温阶段,路基、路肩及边坡土体位移基本不变,环境温度降为负温时,土体的冻结速率较快,土层位移迅速发生冻胀,路基、路肩及边坡处土体最大冻胀量分别为2.2、4.3、3.1 mm,其中,路肩处的位移最大. 产生以上现象的原因是环境温度降低时,冷量从路基顶面与边坡2个方向进入路基体,路基土体在2个方向上产生二维冻结,导致路肩处的冻胀位移最大. 当环境温度为正温并升高时,路基、路肩及边坡处土体位移均产生融沉,基本回到冻胀起始前的位移.

    图  6  土体与桩顶位移随时间的变化曲线
    Figure  6.  Variation curves of displacement of soil and pile top with time

    图6(b)、(c)为桩顶竖向与水平位移随时间的变化曲线. 由图可知:桩顶位移的变化与土体位移的变化规律基本一致,亦与环境温度的变化密切相关;在第2个冻融周期内桩Z1、Z2、Z3的竖向冻拔量分别为0.26、0.12、0.15 mm,桩Z2、Z3的竖向冻拔量分别为桩Z1的46%、58%,说明直锥柱形桩与曲锥柱形桩在整个冻结过程中有较好的抗冻拔效果;路基土体冻结过程中桩Z1、Z2、Z3的桩顶都会产生较小的水平冻胀位移,分别为0.10、0.13、0.14 mm.

    图7为第2个冻融周期内桩身轴力沿深度的分布曲线. 由图可以看出:活动层土体在冻结融化过程中,桩长范围内的轴力都为拉力,随桩长增加0~0.3 m范围内轴力先增大,随后轴力逐渐减小,即桩长0.3 m断面处是桩身的一个中性点;轴力在整个桩长范围内呈非均匀变化,活动层内(0.3 m以上)桩身各截面的轴力差变化较大,多年冻土层内桩身各截面的轴力差变化较小. 将桩长30.0 cm处的轴力进行比较,结果如图8所示. 由图可以看出:桩身轴力与环境温度有密切的关系,随环境温度逐渐降低,桩身各截面的轴力均逐渐增大,当环境温度升高,桩身各截面的轴力均逐渐降低,其中,第16 天的桩身轴力最大,桩Z1、Z2、Z3在第16 天的轴力分别为5.66、4.56、4.01 kN;与桩Z1相比,桩Z2及桩Z3的轴力分别降低19.4%与27.5%.

    图  7  桩身轴力沿深度的变化曲线
    Figure  7.  Variation curves of pile axial force along depth
    图  8  模型桩30 cm处轴力的比较
    Figure  8.  Comparison of axial force at 30 cm of model piles

    图9为温度与桩侧切向应力沿深度的变化曲线. 由图可以看出:与桩身轴力的变化规律相似,活动层内的切向应力为方向向上的冻胀应力,且变化较剧烈,在冻深附近由正值转变为负值,永冻层内的切向应力为方向向下的冻结应力. 是由于随环境温度的降低,活动层内的土体冻结后产生向上的冻胀变形,桩基的存在对土体的自由冻胀产生约束作用,从而在桩侧产生向上的切向冻胀力,永冻层的土体对桩的向上运动或运动趋势有抑制作用,导致桩土之间的冻结应力发挥作用;切向冻胀力的最大值出现在地表附近,桩Z1、Z2、Z3在第16 天的最大切向冻胀应力分别为157.2、153.5、159.4 kPa;活动层内的平均切向冻胀应力为109.3、106.4、97.7 kPa.

    图  9  温度与桩侧切向应力沿深度的变化曲线
    Figure  9.  Variation curves of temperature and pile-side tangential stress along depth

    由冻结过程桩基的受力特点可知,桩基冻深处的轴力为切向冻胀总力. 3种桩基础的冻深Zn均约为0.3 m,表1为不同桩型模型桩的受力情况对比. 表中: S 为冻深范围内桩和冻土的接触面积,F为桩基的切向冻胀总力, τ为冻深范围内各桩平均切向冻胀应力. 由表可以看出:桩型的改变可明显降低F,桩Z3的切向冻胀总力最小,桩Z2次之. 桩Z1、Z2、Z3切向冻胀总力之比为1.00∶0.81∶0.71,与S之比呈正相关,且比值接近,τ 之比约等于1∶1∶1.

    表  1  不同桩型模型桩的受力对比
    Table  1.  Stress comparison of model piles in different shapes
    Zn/mS/cm2F/kNτ/kPa
    Z10.35185.66109.3
    Z20.34474.56106.4
    Z30.34274.0197.7
    下载: 导出CSV 
    | 显示表格

    环境温度降低时,桩周土体逐层自上而下低发生冻结. 以第1层土冻结时对桩基的作用力进行分析:当土体冻结时,产生竖向冻胀力V1和水平冻胀力H1,每层土的厚度为ΔH,桩基锥角为 β,如图10所示.

    图  10  直锥(曲锥)桩侧土体冻胀力的分解图示
    Figure  10.  Decomposition of frost-heave force of the side of straight-cone (curved-cone) pile

    V1H1沿桩侧与垂直桩侧分解,则第1层土体作用于桩基础的切向应力和法向应力分别为

    {τ1=V1cosβΔH+H1sinβΔH,σ1=H1cosβΔHV1sinβΔH.
    (3)

    结合式(3)与表1,直(曲)锥柱形桩比等截面圆形桩的抗冻拔效果好的主要原因可归纳为以下2点:

    1) 由于锥形桩桩侧斜面的存在,改变了桩基的受力状态,式(3)中V1sin β 表现为拉应力,导致桩侧水平应力减小. 冻土桩基接触面的抗剪强度与法向应力的大小呈正相关. 因此,锥形桩桩土界面的极限抗剪强度相比于等截面桩较低,更易达到极限抗剪强度.

    2) 随着桩周土体冻胀变形的发展,若桩土界面达到极限强度,则桩土界面产生滑移. 冻深范围内各桩平均切向冻胀应力的差异较小,但曲锥柱形桩与冻土的接触面积最小,从而导致曲锥柱形桩的切向冻胀总力最小,抗冻拔效果最好.

    1) 路基体的冻结(融化)受路基顶面与边坡 的2个方向冷(热)量的共同影响,是一个二维冻结(融化)问题,接触网支柱桩基础路基与边坡两侧的温度场是非对称分布的,桩基附近的最大融深约为 30.0 cm,边坡测温孔的最大融深约为15.0 cm.

    2) 土体与桩顶的位移均与环境温度的变化密切相关. 路基土体的二维冻结现象导致路肩处的冻胀位移最大,路基、路肩及边坡处土体最大冻胀量分别为2.2、4.3、3.1 mm. 等截面圆形桩的竖向冻拔量为0.26 mm,直锥柱形桩与曲锥柱形桩的竖向冻拔量仅为Z1的46%、58%,3根桩的桩顶均产生约为0.10 mm的水平冻胀量.

    3) 活动层土体在冻结过程中桩基础整体受拉,冻深处的轴力最大. 等截面圆形桩的最大切向冻胀总力为5.66 kN,与等截面圆形桩相比,直锥柱形桩与曲锥柱形桩分别降低19.4%与27.5%. 切向应力在活动层内为方向向上的切向冻胀应力,永冻层内为方向向下的冻结应力,切向冻胀应力的最大值出现在地表附近.

    4) 桩周土体冻融作用下,曲锥柱形桩具有竖向冻拔位移小、切向冻胀总力小的特点,即曲锥柱形桩具有较好的抗冻拔效果. 研究成果可为多年冻土区铁路电气化接触网支柱基础的抗冻拔设计提供参考.

  • 图 1  德国TR系列电磁悬浮列车发展历程[1, 14-15]

    Figure 1.  Development history of TR series EMS trains in Germany[1, 14-15]

    图 2  日本HSST系列电磁悬浮列车发展历程[15]

    Figure 2.  Development history of HSST series EMS trains in Japan[5]

    图 3  超导电动悬浮系统示意[21]

    Figure 3.  Schematic of superconducting EDS system[21]

    图 4  超导电动悬浮原理示意[1]

    Figure 4.  Schematic of principle for superconducting EDS[1]

    图 5  日本电动悬浮列车发展历程[1, 15, 21-23]

    Figure 5.  Development history of EDS trains in Japan[1, 15, 21-23]

    图 6  日本改进型L0磁悬浮列车[6]

    Figure 6.  Improved L0 maglev train in Japan[6]

    图 7  美国麻省理工学院提出的磁浮飞机[32]

    Figure 7.  Magplane developed by MIT, USA[32]

    图 8  HTT公司和VH公司研制的真空管道磁悬浮车[34, 36]

    Figure 8.  Maglev vehicles based on evacuated tubes developed by HTT and VH[34, 36]

    图 9  中国航天科工集团研制的超高速磁悬浮试验车[39]

    Figure 9.  Test vehicle of ultra-high-speed maglev developed by China Aerospace Science and Industry Corporation (CASIC), China[39]

    图 10  日本研制的车载LTS磁体示意[40]

    Figure 10.  Schematic of on-board LTS magnet developed in Japan[40]

    图 11  超导磁体偏心结构示意

    Figure 11.  Schematic diagram of off-center superconducting magnet

    图 12  日本研制的基于Bi2223带材的车载HTS磁体[50]

    Figure 12.  On-board HTS magnet based on Bi2223 stripe developed in Japan[50]

    图 13  日本研制的基于ReBCO带材的车载HTS磁体[60, 62]

    Figure 13.  On-board HTS magnet based on ReBCO stripe developed in Japan[60, 62]

    图 14  日本设计的线圈容器[61]

    Figure 14.  Coil case designed in Japan[61]

    图 15  韩国研制的车载HTS磁体[66-67]

    Figure 15.  On-board HTS magnet developed in Korea[66-67]

    图 16  中国科学院合肥物质科学研究院研制的车载LTS磁体外观[69]

    Figure 16.  Appearance of on-board LTS magnet developed by Hefei Institutes of Physical Science, Chinese Academy of Sciences (CAS)[69]

    图 17  中国上海交通大学研制的车载HTS磁体[72-73]

    Figure 17.  On-board HTS magnet developed by Shanghai Jiao Tong University (SJTU), China[72-73]

    图 18  中国西南交通大学研制的车载HTS磁体[78]

    Figure 18.  On-board HTS magnet developed by Southwest Jiaotong University (SWJTU), China[78]

    图 19  超导电动悬浮系统实验平台[93-94]

    Figure 19.  Experimental platform of superconducting EDS system[93-94]

    图 20  超导磁体稳定性地面实验平台[63, 96, 99]

    Figure 20.  Ground experimental platform for superconducting magnet stability[63, 96, 99]

    表  1  不同悬浮方式的磁悬浮列车对比[3-6]

    Table  1.   Comparison of maglev trains with different suspension methods[36]

    悬浮
    类型
    悬浮原理悬浮高
    度/mm
    最高试验速
    度/(km·h−1)
    最高应用速
    度/(km·h−1
    悬浮、导
    向控制
    车载
    磁体
    路轨
    铺设
    车辆重量
    (单节车厢)
    研究
    进展
    EMS 车载磁体与铁磁轨道之间的相互吸引产生悬浮力 8~10 550
    (德国 TR09)
    430
    (上海磁浮
    线 TR08)
    需要闭环控制,有静态悬浮 电磁铁 硅钢片 重,56.5 t
    (德国 TR09)
    商业
    运营
    EDS 车载磁体与“8”字线圈、导电板之间相对运动产生悬浮力 80~150
    (超导电动
    悬浮),
    20~30
    (永磁电动
    悬浮)
    603
    (JR 东
    海 L0)
    505
    (日本山梨
    试验线 L0)
    自稳定,无需控制,无静态悬浮 超导磁
    体,永磁体
    “8”字线圈,金属导电板 轻,25 t
    (JR 东
    海 L0)
    准商
    业运营
    SPL 非理想第二类超导体的抗磁特性产生
    悬浮力
    10~30 300
    (西南交通
    大学模型车)
    自稳定,无需控制,有静态悬浮 超导块材 永磁导轨 轻,12 t
    (西南交通
    大学工程
    化样车)
    试验
    阶段
    下载: 导出CSV

    表  2  改进型L0磁悬浮列车主要技术参数[6]

    Table  2.   Main technical parameters of improved L0 maglev train[6]

    参数取值
    悬浮方式电动悬浮
    编组5 / 7 / 12
    车辆尺寸(单节车厢)/m长 25,宽 2.9,高 3.08
    重量/(t·车厢−125
    设计最高速度/(km·h−1603
    运行速度/(km·h−1505
    下载: 导出CSV

    表  3  日本历代车载超导磁体主要技术参数对比[51, 59]

    Table  3.   Comparison of main technical parameters of on-board superconducting magnets developed in Japan[51, 59]

    磁体
    类型
    线圈尺寸/
    mm
    额定电
    流/A
    匝数/匝导线材料匝间
    绝缘
    运行
    方式
    电流衰减
    率/(%·d−1
    线圈工作
    温度/K
    冷却方式研究进展
    LTS 长 1070,
    宽 500
    500 1400 NbTi 闭环 < 0.1 4.2 液氦浸泡冷却,GM-JT 制冷机辅助 装车运行
    一代
    HTS
    长 1070,
    宽 500
    536 1400 Bi-2223 闭环 0.4~0.7 < 20.0 GM 双极制冷机,
    传导冷却
    单个磁体装车运行
    二代
    HTS
    长 1070,
    宽 500
    250 2800 ReBCO 绝缘 开环 约 13.0 30.0~40.0 GM 制冷机,
    传导冷却
    降温、励磁、振动、涡流,地面试验
    下载: 导出CSV

    表  4  韩国车载HTS磁体主要技术参数[66-67]

    Table  4.   Main technical parameters of on-board HTS magnet developed in Korea [66-67]

    磁体类型 线圈尺
    寸/mm
    磁动势/
    kA
    运行电
    流/A
    匝数/匝 导线
    材料
    匝间
    绝缘
    运行
    方式
    线圈工作温度/K 冷却方式 研究进展
    2020 年全尺寸推进车载磁体 长 520,
    宽 420
    300 126.0 2610 ReBCO 无绝缘 开环 < 20.0 GM 双极制冷机,传导冷却 降温、励磁、推进,地面实验
    2021 年1/2 尺寸车载磁体 长 600,
    宽300
    150 85.4 1760 ReBCO 金属
    绝缘
    闭环 30.0~40.0 氦气提前冷却,固氮保温 降温、励磁,地面实验
    下载: 导出CSV

    表  5  中国科学院合肥物质科学研究院车载LTS磁体主要技术参数[68-69]

    Table  5.   Main technical parameters of on-board LTS magnet developed by Hefei Institutes of Physical Science, CAS[68-69]

    项目参数
    磁体尺寸/mm长 1278,宽 598,高 78
    导线材料NbTi
    额定电流/A274
    匝数/匝2 738
    线圈工作温度/K4.6
    研究进展试验阶段
    下载: 导出CSV

    表  6  中国上海交通大学车载HTS磁体主要技术参数[71-74, 76-77]

    Table  6.   Main technical parameters of on-board HTS magnet developed by SJTU, China [71-74, 76-77]

    团队
    名称
    磁体尺
    寸/m
    磁动
    势/kA
    导线材料 匝数/匝 匝间绝缘 运行
    方式
    电流衰减
    率/( %·d−1
    线圈工作
    温度/K
    冷却方式 研究进展
    黄振团队 长 0.83,
    宽 0.24,
    高 0.93
    360 ReBCO 2400 无绝缘 闭环 2.0 30.0~40.0 可插拔制冷机冷却,固氮辅助冷却 降温、励磁、振动,
    地面试验
    吴蔚团队 长 1.6,
    宽 0.3,
    高 0.8
    360 ReBCO 1800 无绝缘 闭环 < 1.1 < 35.6 可插拔制冷机冷却,
    固氮辅助冷却
    已研制5台磁体,
    并投入试验运行
    下载: 导出CSV

    表  7  中国西南交通大学车载HTS磁体主要技术参数[78]

    Table  7.   Main technical parameters of on-board HTS magnet developed by SWJTU, China[78]

    项目参数
    磁体尺寸/m长 1.6,宽 0.4,高 0.6
    最大运行电流/A250
    匝数/匝1080
    导线材料ReBCO
    匝间绝缘绝缘
    线圈工作温度/K<30.0
    冷却方式GM 双极制冷机,
    传导冷却
    研究进展降温、励磁、涡流,
    地面试验
    下载: 导出CSV
  • [1] 魏庆朝, 孔永健, 时瑾. 磁浮铁路系统与技术 [M]. 2版. 北京: 中国科学技术出版社, 2010.
    [2] LEE H W, KIM K C, LEE J. Review of maglev train technologies[J]. IEEE Transactions on Magnetics, 2006, 42(7): 1917-1925. doi: 10.1109/TMAG.2006.875842
    [3] 熊嘉阳,邓自刚. 高速磁悬浮轨道交通研究进展[J]. 交通运输工程学报,2021,21(1): 177-198. doi: 10.19818/j.cnki.1671-1637.2021.01.008

    XIONG Jiayang, DENG Zigang. Research progress of high-speed maglev rail transit[J]. Journal of Traffic and Transportation Engineering, 2021, 21(1): 177-198. doi: 10.19818/j.cnki.1671-1637.2021.01.008
    [4] DENG Z G, ZHANG W H, WANG L, et al. A high-speed running test platform for high-temperature superconducting maglev[J]. IEEE Transactions on Applied Superconductivity, 2022, 32(4): 3600905.1-3600905.5.
    [5] 朱雪黎. 世界首台高温超导高速磁浮工程化样车在川启用 [N/OL]. 四川日报, 2021-01-14 [2022-09-05]. https://www.sc.gov.cn/10462/12771/2021/1 /14/5cd0cf013e9f4cb0bce30fb0f58f5230.shtml.
    [6] Central Japan Railway Company. About the vehicle[EB/OL]. [2022-09-05]. https://scmaglev.jr-central-global.com/abou t/design.
    [7] MEINS J, MILLER L, MAYER W J. The high speed maglev transport system TRANSRAPID[J]. IEEE Transactions on Magnetics, 1988, 24(2): 808-811. doi: 10.1109/20.11347
    [8] NAKAMURA S. Development of high speed surface transport system (IISST)[J]. IEEE Transactions on Magnetics, 1979, 15(6): 1428-1433. doi: 10.1109/TMAG.1979.1060437
    [9] 吴祥明,常文森,刘万明. 上海高速磁浮列车及磁浮技术发展刍议[J]. 综合运输,2005,27(1): 28-31.
    [10] 宫崎聡夫,张芳. 磁悬浮列车的液压制动装置[J]. 国外机车车辆工艺,2017(4): 20-23.
    [11] 付敬懿. 长沙中低速磁浮快线开通试运营[J]. 城市轨道交通研究,2016,19(6): 116.
    [12] 刘珜. S1线等三条地铁新线周六开通 [N/OL]. 北京青年报, 2017-12-28 [2022-09-05]. https://www.so hu.com/a/213177044_255783.
    [13] 黎棠. 凤凰磁浮观光快线正式开通运营 [N/OL]. 潇湘晨报, 2022-07-30 [2022-10-27]. https://baijiah ao.baidu.com/s?id=1739780194246544640&#38;wfr=spider&#38;for=pc.
    [14] 张娟. 超导电动悬浮磁力特性及超导磁浮车辆动力学仿真分析 [D]. 成都: 西南交通大学, 2020.
    [15] 王麟. 轨道交通的前世今生 [M]. 北京: 中国铁道出版社, 2018.
    [16] 马光同,杨文姣,王志涛,等. 超导磁浮交通研究进展[J]. 华南理工大学学报(自然科学版),2019,47(7): 68-74,82.

    MA Guangtong, YANG Wenjiao, WANG Zhitao, et al. Research development of superconducting maglev transportation[J]. Journal of South China University of Technology (Natural Science Edition), 2019, 47(7): 68-74,82.
    [17] 邓自刚,刘宗鑫,李海涛,等. 磁悬浮列车发展现状与展望[J]. 西南交通大学学报,2022,57(3): 455-474,530. doi: 10.3969/j.issn.0258-2724.20220001

    DENG Zigang, LIU Zongxin, LI Haitao, et al. Development status and prospect of maglev train[J]. Journal of Southwest Jiaotong University, 2022, 57(3): 455-474,530. doi: 10.3969/j.issn.0258-2724.20220001
    [18] 邓自刚,李海涛. 高温超导磁悬浮车研究进展[J]. 中国材料进展,2017,36(5): 329-334,351. doi: 10.7502/j.issn.1674-3962.2017.05.02

    DENG Zigang, LI Haitao. Recent development of high-temperature superconducting maglev[J]. Materials China, 2017, 36(5): 329-334,351. doi: 10.7502/j.issn.1674-3962.2017.05.02
    [19] 王家素,王素玉. 高温超导磁悬浮列车研究综述[J]. 电气工程学报,2015,10(11): 1-10. doi: 10.11985/2015.11.001

    WANG Jiasu, WANG Suyu. High temperature superconducting maglev train[J]. Journal of Electrical Engineering, 2015, 10(11): 1-10. doi: 10.11985/2015.11.001
    [20] 马卫华,罗世辉,张敏,等. 中低速磁浮车辆研究综述[J]. 交通运输工程学报,2021,21(1): 199-216. doi: 10.19818/j.cnki.1671-1637.2021.01.009

    MA Weihua, LUO Shihui, ZHANG Min, et al. Research review on medium and low speed maglev vehicle[J]. Journal of Traffic and Transportation Engineering, 2021, 21(1): 199-216. doi: 10.19818/j.cnki.1671-1637.2021.01.009
    [21] 李家志,索红莉,王毅,等. 超导材料在磁悬浮列车上的应用进展(上)[J]. 铁道技术监督,2020,48(3): 38-44.

    LI Jiazhi, SUO Hongli, WANG Yi, et al. Progress in the application of superconducting materials on maglev trains (part 1 of 2)[J]. Railway Quality Control, 2020, 48(3): 38-44.
    [22] OHSAKI H. Review and update on maglev[R]. Karlsruhe: European Cryogenics Days, 2017.
    [23] EASTHAM A R, HAYES W F. Maglev systems development status[J]. IEEE Aerospace and Electronic Systems Magazine, 1988, 3(1): 21-30. doi: 10.1109/62.843
    [24] SAIJO T, KOIKE S, TADAKUMA S. Characteristics of linear synchronous motor drive cycloconverter for maglev vehicle ML-500 at Miyazaki test track[J]. IEEE Transactions on Industry Applications, 1981, IA-17(5): 533-543. doi: 10.1109/TIA.1981.4503994
    [25] KYOTANI Y. Recent progress by JNR on maglev[J]. IEEE Transactions on Magnetics, 1988, 24(2): 804-807. doi: 10.1109/20.11346
    [26] 商福昆. 宫崎实验线新磁浮实验车MLU—002N[J]. 铁道机车车辆,1995,15(1): 58-60.
    [27] ONO M, KOGA S, OHTSUKI H. Japan’s superconducting maglev train[J]. IEEE Instrumentation & Measurement Magazine, 2002, 5(1): 9-15.
    [28] SAWADA K. Outlook of the superconducting maglev[J]. Proceedings of the IEEE, 2009, 97(11): 1881-1885. doi: 10.1109/JPROC.2009.2030246
    [29] 蓝建中. 日本超导磁浮列车时速创纪录[J]. 城市轨道交通研究,2015,18(5): 134.
    [30] POWELL J R, DANBY G R. High speed transport by magnetically suspended trains[J]. Mechanical Engineering, 1966, 89(4): 66.
    [31] THORNTON R D. Efficient and affordable maglev opportunities in the United States[J]. Proceedings of the IEEE, 2009, 97(11): 1901-1921. doi: 10.1109/JPROC.2009.2030251
    [32] THOME R, RADOVINSKY A, MONTGOMERY B. EDS levitation and guidance using sheet guideways [C]//Proceedings of 16th International Conference on Magnetically Levitated Systems and Linear Drives. Rio de Janeiro: [s.n.], 2000: 236-241.
    [33] 张瑞华,刘育红,徐善纲. 美国Magplane磁悬浮列车方案介绍[J]. 变流技术与电力牵引,2005(5): 40-43.

    ZHANG Ruihua, LIU Yuhong, XU Shangang. American Magplane schemes[J]. Converter Technology & Electric Traction, 2005(5): 40-43.
    [34] Courtesy Hyperloop Transportation Technologies. New full-scale hyperloop passenger capsule revealed [EB/OL]. (2018-10-03) [2022-09-05]. https://edition.cnn.com/travel/article/hyperloop-capsule/index.html.
    [35] 武瑛严,陆光,徐善纲. Inductrack磁浮技术及其在磁浮列车系统中的应用[J]. 电气应用,2006,25(1): 1-3.
    [36] ANDREW J H. Mile stone: the first human passenger test [EB/OL]. (2020-11-19) [2022-09-05]. https://virginhyperloop.com/pegasus.
    [37] 谭斌. 高温超导电动悬浮轨道结构研究[J]. 铁道建筑技术,2021(6): 27-31. doi: 10.3969/j.issn.1009-4539.2021.06.006

    TAN Bin. Study on the structure of high-temperature superconducting electrodynamic suspension track[J]. Railway Construction Technology, 2021(6): 27-31. doi: 10.3969/j.issn.1009-4539.2021.06.006
    [38] 杨文俊. 高速飞车山西省实验室揭牌暨大同(阳高)试验线工程开工奠基仪式在大同举行 [N/OL]. 山西日报, 2021-05-25 [2022-09-05]. http://www.shanxi.gov.cn/yw/zwhd/202105/t20210525_920032.shtml.
    [39] 磁电总体部. 国内首次全尺寸超导航行试验成功 [EB/OL]. 2023-01-14 [2023-02-20]. https://mp.weixin.qq.com/s/_ dPNZyZqVDNCsqUcOhZC2Q.
    [40] NISHIJIMA S, ECKROAD S, MARIAN A, et al. Superconductivity and the environment: a roadmap[J]. Superconductor Science and Technology, 2013, 26(11): 113001.1-113001.35.
    [41] FUJIMOTO S, TANEYA S, KURIHARA T, et al. Development of a 4K GM/JT refrigerator for maglev vehicle [C]//Proceedings of 16th International Cryogenic Engineering Conference/International Cryogenic Materials Conference. Amsterdam: Elsevier, 1997: 331-334.
    [42] KONDO Y, TERAI M, NISHIKAWA Y, et al. Development of a GM-type pulse tube refrigerator cooling system for superconducting maglev vehicles [M]//ROSS R G. Cryocoolers 13. Boston: Springer, 2005: 681-687.
    [43] 中尾裕行, 高橋政彦, 真田芳直, 等. 浮上式鉄道用超電導磁石の4K/80K両用GM冷凍システムの開発[J]. 低温工学, 1999, 34(2): 65-72. doi: 10.2221/jcsj.34.65

    NAKAO H, TAKAHASHI M, SANADA Y, et al. Development of a 4K/80K multiple operating type of GM refrigeration system for the superconducting magnet in maglev use cooling characteristics of the nitrogen self-circulated cooling-type radiation shield plate [J]. TEION KOGAKU (Journal of Cryogenics and Superconductivity Society of Japan), 1999, 34(2): 65-72. doi: 10.2221/jcsj.34.65
    [44] 服部敏雄, 青山博, 福士慶滋. 超電導磁石の荷重支持構造, 荷重支持体並びに磁気浮上列車: 平 4-162405[P]. 1992-06-05.
    [45] 王秋良. 高磁场超导磁体科学 [M]. 北京: 科学出版社, 2008.
    [46] KUSADA S, IGARASHI M, KUWANO K, et al. Persistent current HTS magnet cooled by cryocooler (2)−magnet configuration and persistent current operation test[J]. IEEE Transactions on Applied Superconductivity, 2005, 15(2): 2285-2288. doi: 10.1109/TASC.2005.849632
    [47] TOSAKA T, TASAKI K, MARUKAWA K, et al. Persistent current HTS magnet cooled by cryocooler (4)−persistent current switch characteristics[J]. IEEE Transactions on Applied Superconductivity, 2005, 15(2): 2293-2296. doi: 10.1109/TASC.2005.849634
    [48] TASAKI K, TOSAKA T, MARUKAWA K, et al. Persistent current HTS magnet cooled by cryocooler (3)−HTS magnet characteristics[J]. IEEE Transactions on Applied Superconductivity, 2005, 15(2): 2289-2292. doi: 10.1109/TASC.2005.849633
    [49] IGARASHI M, NAKAO H, TERAI M, et al. Persistent current HTS magnet cooled by cryocooler (1)−project overview[J]. IEEE Transactions on Applied Superconductivity, 2005, 15(2): 1469-1472. doi: 10.1109/TASC.2005.849130
    [50] TERAI M, IGARASHI M, KUSADA S, et al. The R&D project of HTS magnets for the superconducting maglev[J]. IEEE Transactions on Applied Superconductivity, 2006, 16(2): 1124-1129. doi: 10.1109/TASC.2006.871342
    [51] KUWANO K, IGARASHI M, KUSADA S, et al. The running tests of the superconducting maglev using the HTS magnet[J]. IEEE Transactions on Applied Superconductivity, 2007, 17(2): 2125-2128. doi: 10.1109/TASC.2007.899003
    [52] OGATA M, MIYAZAKI Y, HASEGAWA H, et al. Basic study of HTS magnet using 2G wires for maglev train[J]. Physica C: Superconductivity and Its Applications, 2010, 470(20): 1782-1786. doi: 10.1016/j.physc.2010.05.206
    [53] OGATA M, MIZUNO K, ARAI Y, et al. Study on applicability of rare earth high-temperature superconducting wires to superconducting magnet for maglev system[J]. Quarterly Report of RTRI, 2010, 51(3): 151-155.
    [54] OGATA M, MIZUNO K, ARAI Y, et al. Trial manufacture of small HTS magnet using 2G tapes for maglev train application[J]. IEEE Transactions on Applied Superconductivity, 2011, 21(3): 1556-1559. doi: 10.1109/TASC.2010.2091487
    [55] TAKEMATSU T, HU R, TAKAO T, et al. Degradation of the performance of a YBCO-coated conductor double pancake coil due to epoxy impregnation[J]. Physica C: Superconductivity and Its Applications, 2010, 470(17/18): 674-677.
    [56] IWAI S, MIYAZAKI H, TOSAKA T, et al. Development of large-scale racetrack coil wound with REBCO-coated conductors[J]. IEEE Transactions on Applied Superconductivity, 2014, 24(3): 4600705.1-4600705.5.
    [57] MIZUNO K, OGATA M, HASEGAWA H. Manufacturing of REBCO coils strongly bonded to cooling members with epoxy resin aimed at its application to maglev[J]. Physica C: Superconductivity and Its Applications, 2014, 506: 138-142. doi: 10.1016/j.physc.2014.06.009
    [58] MIZUNO K, OGATA M, HASEGAWA H. Manufacturing of a REBCO racetrack coil using thermoplastic resin aiming at maglev application[J]. Physica C: Superconductivity and Its Applications, 2015, 518: 101-105. doi: 10.1016/j.physc.2015.06.016
    [59] MIZUNO K, SUGINO M, TANAKA M, et al. Experimental production of a real-scale REBCO magnet aimed at its application to maglev[J]. IEEE Transactions on Applied Superconductivity, 2017, 27(4): 3600205.1-3600205.5.
    [60] MIZUNO K, SUGINO M, OGATA M. Experimental production and evaluation of racetrack coils for REBCO on-board magnet[J]. Quarterly Report of RTRI, 2016, 57(3): 234-239. doi: 10.2219/rtriqr.57.3_234
    [61] MIZUNO K, SUGINO M, TANAKA M, et al. Development of a real-scale REBCO coil for the demonstration of a magnetomotive force of 700 kA[J]. Quarterly Report of RTRI, 2017, 58(4): 318-323. doi: 10.2219/rtriqr.58.4_318
    [62] MIZUNO K, TANAKA M, OGATA M. Evaluation of eddy current heating in a REBCO magnet due to the magnetic field of ground coils for the maglev[J]. Superconductor Science and Technology, 2020, 33(7): 074009.1-074009.6.
    [63] MIZUNO K, TANAKA M, OGATA M, et al. Mechanical vibration test of a REBCO coil designed for application to the maglev[J]. IEEE Transactions on Applied Superconductivity, 2018, 28(4): 3601107.1-3601107.6.
    [64] PARK C B, LEE C Y, YOON S, et al. Development of a small-scale superconducting LSM using Gd-Ba-Cu-O high-temperature superconducting wire[J]. IEEE Transactions on Energy Conversion, 2016, 31(4): 1250-1256. doi: 10.1109/TEC.2016.2577058
    [65] MUN J, LEE C, KIM K, et al. Operating thermal characteristics of REBCO magnet for maglev train using detachable cooling system[J]. IEEE Transactions on Applied Superconductivity, 2019, 29(5): 3603305.1-3603305.5.
    [66] LEE C Y, LEE J H, LIM J, et al. Design and evaluation of prototype high-Tc superconducting linear synchronous motor for high-speed transportation[J]. IEEE Transactions on Applied Superconductivity, 2020, 30(4): 3602205.1-3602205.5.
    [67] MUN J, LEE C, LEE C, et al. Thermal and electromagnetic performance evaluation of REBCO magnet with solid nitrogen thermal battery for maglev train[J]. IEEE Transactions on Applied Superconductivity, 2021, 31(5): 3601405.1-3601405.5.
    [68] ZHENG J X, ZOU C L, LIU X F, et al. Development of high current density, compactness NbTi superconducting coil for the maglev system[J]. IEEE Transactions on Applied Superconductivity, 2023, 33(1): 4900205.1-4900205.10.
    [69] 中国科学技术大学. 中科院合肥物质研究院“高载流跑道型低温超导磁体研制”项目通过航天科工集团验收 [EB/OL]. (2022-05-25) [2022-09-05]. http://qybx.ustc.edu.cn/2022/0525/c20985a 556003/page.htm
    [70] 宋云涛, 郑金星, 刘旭峰, 等. 一种用于超导磁悬浮列车的高温超导磁体装置及使用方法: 202011185421[P]. 2021-07-20.
    [71] DONG F L, HUANG Z, HAO L N, et al. An on-board 2G HTS magnets system with cooling-power-free and persistent-current operation for ultrahigh speed superconducting maglevs[J]. Scientific Reports, 2019, 9: 11844.1-11844.12.
    [72] DONG F L, HUANG Z, XU X Y, et al. Improvement of magnetic and cryogenic energy preservation performances in a feeding-power-free superconducting magnet system for maglevs[J]. Energy, 2020, 190: 116403.1-116403.11.
    [73] WU W, YU X, ZHANG C, et al. Development of on-board HTS magnets for EDS-type maglev trains[R]. Tampa: Applied Superconductivity Conference, 2020.
    [74] 吴蔚, 李凯, 邵南, 等. 电动磁浮车载高温超导磁体全断电运行特性 [C]//第十届全国磁悬浮技术与振动控制学术会议论文集. 沈阳: [出版地不详], 2022: 101.
    [75] SHAO Q, LI K, SHAO N, et al. Multiphysics field topology optimization design of main support structure of high-temperature superconducting magnets[J]. IEEE Transactions on Applied Superconductivity, 2022, 32(6): 4902005.1-4902005.5.
    [76] DONG F L, HUANG Z, LI X F, et al. R&D of no-insulation HTS magnets using 2G wires in a prototype for maglev applications[J]. IEEE Transactions on Applied Superconductivity, 2019, 29(5): 4601905.1-4601905.5.
    [77] LU L, WU W, YU X, et al. High-temperature superconducting non-insulation closed-loop coils for electro-dynamic suspension system[J]. Electronics, 2021, 10(16): 1980.1-1980.14.
    [78] MA G T, GONG T Y, WANG R C, et al. Design, fabrication and testing of a coated conductor magnet for electrodynamic suspension[J]. Superconductor Science and Technology, 2022, 35(2): 025013.1-025013.13.
    [79] 蒋久福,盛荣进,聂兴超,等. 铝制传导冷却低温容器的结构设计与强度分析[J]. 低温与超导,2021,49(9): 32-37.

    JIANG Jiufu, SHENG Rongjin, NIE Xingchao, et al. Structural design and strength analysis of aluminum cryostat with conduction cooling[J]. Cryogenics & Superconductivity, 2021, 49(9): 32-37.
    [80] 盛荣进,蒋久福,聂兴超,等. 制冷机可插拔式固氮低温容器的热性能研究[J]. 低温工程,2021(4): 40-46,58. doi: 10.3969/j.issn.1000-6516.2021.04.008

    SHENG Rongjin, JIANG Jiufu, NIE Xingchao, et al. Study on thermal characteristics of solid nitrogen cryogenic system with detachable cryocooler[J]. Cryogenics, 2021(4): 40-46,58. doi: 10.3969/j.issn.1000-6516.2021.04.008
    [81] HE J L, ROTE D M, COFFEY H T. Applications of the dynamic circuit theory to maglev suspension systems[J]. IEEE Transactions on Magnetics, 1993, 29(6): 4153-4164. doi: 10.1109/20.280868
    [82] HE J L, ROTE D M. Double-row loop-coil configuration for EDS maglev suspension, guidance, and electromagnetic guideway directional switching[J]. IEEE Transactions on Magnetics, 1993, 29(6): 2956-2958. doi: 10.1109/20.280905
    [83] DAVEY K, MORRIS T, SHAAF J, et al. Calculation of motion induced eddy current forces in null flux coils[J]. IEEE Transactions on Magnetics, 1995, 31(6): 4214-4216. doi: 10.1109/20.489930
    [84] MURAI T. Characteristics of LSM combined propulsion, levitation and guidance[J]. Electrical Engineering in Japan, 1995, 115(4): 134-145. doi: 10.1002/eej.4391150412
    [85] MURAI T, FUJIMOTO T, FUJIWARA S. Test run of combined propulsion, levitation and guidance system at Miyazaki test track[J]. Electrical Engineering in Japan, 1996, 117(2): 68-79. doi: 10.1002/eej.4391170207
    [86] 万尚军,钱金根,倪光正,等. 电动悬浮型磁悬浮列车悬浮与导向技术剖析[J]. 中国电机工程学报,2000,20(9): 23-25,31. doi: 10.3321/j.issn:0258-8013.2000.09.006

    WAN Shangjun, QIAN Jingen, NI Guangzheng, et al. Study of the levitation and guidance technology for electrodynamic suspension maglev vehicle[J]. Proceedings of the CSEE, 2000, 20(9): 23-25,31. doi: 10.3321/j.issn:0258-8013.2000.09.006
    [87] CAI Y, MA G T, WANG Y Y, et al. Semianalytical calculation of superconducting electrodynamic suspension train using figure-eight-shaped ground coil[J]. IEEE Transactions on Applied Superconductivity, 2020, 30(5): 3602509.1-3602509.9.
    [88] GONG T Y, MA G T, WANG R C, et al. 3-D FEM modeling of the superconducting EDS train with cross-connected figure-eight-shaped suspension coils[J]. IEEE Transactions on Applied Superconductivity, 2021, 31(3): 3600213.1-3600213.13.
    [89] SU Z H, LUO J, MA G T, et al. Fast and precise calculation of mutual inductance for electrodynamic suspension: methodology and validation[J]. IEEE Transactions on Industrial Electronics, 2022, 69(6): 6046-6057. doi: 10.1109/TIE.2021.3088362
    [90] SU Z H, MA G T, LUO J. Analytical modeling of the closed-loop operation and quench behavior for superconducting electrodynamic suspension train[J]. IEEE Transactions on Transportation Electrification, 2022, 8(1): 1026-1039. doi: 10.1109/TTE.2021.3119290
    [91] FUJIMOTO T, AIBA M, SUZUKI H, et al. Characteristics of electromagnetic force of ground coil for levitation and guidance at the yamanashi maglev test line[J]. Quarterly Report of RTRI, 2000, 41(2): 63-67. doi: 10.2219/rtriqr.41.63
    [92] CAI Y, ROTE D M, MULCAHY T M, et al. Dynamic stability of repulsive-force maglev suspension systems [R]. Illinois: Argonne National Laboratory, 1996.
    [93] CHO H, BAE D K, SUNG H K, et al. Experimental study on the electrodynamic suspension system with HTSC and PM Halbach array magnets[J]. IEEE Transactions on Applied Superconductivity, 2008, 18(2): 808-811. doi: 10.1109/TASC.2008.921290
    [94] MA G T, WANG Y Y, LUO J, et al. An analytical-experiment coupling method to characterize the electrodynamic suspension system at various speeds[J]. IEEE Transactions on Industrial Electronics, 2022, 69(7): 7170-7180. doi: 10.1109/TIE.2021.3097600
    [95] OHMORI J, NAKAO H, YAMASHITA T, et al. Heat load tests of superconducting magnets vibrated electromagnetically for the Maglev train[J]. Cryogenics, 1997, 37(8): 403-407. doi: 10.1016/S0011-2275(97)00033-7
    [96] TANAKA M, AIBA M, SUZUKI M. Electromagnetic vibration test for durability verification of ground coil[J]. Quarterly Report of RTRI, 2007, 48(2): 110-114. doi: 10.2219/rtriqr.48.110
    [97] JIZO Y, AKAGI H, YAMAGUCHI T, et al. Heat load characteristics and new design using one-coil model superconducting magnets[J]. Cryogenics, 1997, 37(7): 371-379. doi: 10.1016/S0011-2275(97)00034-9
    [98] SUZUKI E. Heating phenomena in the superconducting magnet of a maglev vehicle caused by electromagnetic vibration[J]. Cryogenics, 1997, 37(7): 363-370. doi: 10.1016/S0011-2275(97)00029-5
    [99] 龚天勇,马光同,罗俊,等. 行波磁场中高温超导电动悬浮磁体的热性能研究[J]. 中国电机工程学报,2023,43(1): 415-425. doi: 10.13334/j.0258-8013.pcsee.220245

    GONG Tianyong, MA Guangtong, LUO Jun, et al. Study on the thermal performance of high-temperature superconducting electrodynamic suspension magnet subjected to travelling magnetic fields[J]. Proceedings of the CSEE, 2023, 43(1): 415-425. doi: 10.13334/j.0258-8013.pcsee.220245
    [100] OHASHI S. Effect of the damper coils on the rotational motion of the superconducting magnetically levitated bogie[J]. IEEE Transactions on Magnetics, 2000, 36(5): 3680-3682. doi: 10.1109/20.908939
    [101] OHASHI S. Effect of the active damper coils of the superconducting magnetically levitated bogie in case of acceleration[J]. IEEE Transactions on Magnetics, 2008, 44(11): 4163-4166. doi: 10.1109/TMAG.2008.2002788
    [102] OHASHI S, OHSAKI H, MASADA E. Effect of the active damper coil system on the lateral displacement of the magnetically levitated bogie[J]. IEEE Transactions on Magnetics, 1999, 35(5): 4001-4003. doi: 10.1109/20.800735
    [103] OHASHI S, UESHIMA T. Control method of the semi-active damper coil system in the superconducting magnetically levitated bogie against vertical and pitching oscillation[J]. IEEE Transactions on Magnetics, 2012, 48(11): 4542-4545. doi: 10.1109/TMAG.2012.2202378
    [104] 胡道宇,冯馨月,张志华. 超导电动悬浮系统阻尼特性研究[J]. 中国电机工程学报,2021,41(13): 4679-4688.

    HU Daoyu, FENG Xinyue, ZHANG Zhihua. Study on the damping characteristics of superconducting electrodynamic suspension system[J]. Proceedings of the CSEE, 2021, 41(13): 4679-4688.
    [105] OGATA M, OKINO T, IKEDA K, et al. Vibration characteristics of superconducting magnets for the yamanashi maglev test line vehicles[J]. Quarterly Report of RTRI, 2000, 41(2): 79-82. doi: 10.2219/rtriqr.41.79
    [106] 村井敏昭,岩松勝,吉岡博. 超電導磁気浮上方式における8字型コイル諸元の最適化[J]. 電気学会論文誌D (産業応用部門誌),2003,123(1): 9-14.
    [107] HUANG Z, DONG F L, XU X Y, et al. Evaluation of the structural dynamics of a 2G HTS magnet system considering electromagnetic and thermal stress[J]. IEEE Transactions on Applied Superconductivity, 2021, 31(5): 4901005.1-4901005.5.
    [108] 王琦,刘振兴,何杰,等. 超导开关及其控制方式研究进展[J]. 低温与超导,2022,50(1): 1-6,26.

    WANG Qi, LIU Zhenxing, HE Jie, et al. Research review on superconducting switch and control mode[J]. Cryogenics & Superconductivity, 2022, 50(1): 1-6,26.
    [109] 中华人民共和国中央人民政府. 中共中央、国务院印发《交通强国建设纲要》[EB/OL]. (2019-09-19) [2022-05-29]. https://www.gov.cn/gongbao/content/2019/content_5437132.htm.
  • 加载中
图(20) / 表(7)
计量
  • 文章访问数:  1884
  • HTML全文浏览量:  556
  • PDF下载量:  180
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-09-05
  • 修回日期:  2022-11-29
  • 网络出版日期:  2023-06-08
  • 刊出日期:  2022-12-01

目录

/

返回文章
返回