Analysis of Bending Natural Vibration Characteristics of Box Girder Based on Additional Deflection for Shear Lag
-
摘要:
为揭示弯曲空间效应对自振频率削弱的影响规律,选取剪力滞效应引起的附加挠度为广义位移,将箱梁翘曲附加变形纳入体系总动能中,运用Hamilton原理,建立考虑剪切、剪力滞及双重效应影响的箱梁弯曲自振频率变分解析解,引入空间效应对自振频率削弱影响的差值比参数,详细分析截面尺寸及边中跨径比对差值比参数的影响. 算例分析表明:考虑剪切和双重效应影响的箱梁自振频率解析解与有限元数值解吻合较好;频率阶数越大,各效应对自振频率的削弱程度越大,其中,双重效应影响最为显著,对一阶频率,双重效应对简支和连续箱梁自振频率分别削弱了4.72%和4.80%;跨宽比、宽高比和边中跨径比越大,自振频率差值比越小;板宽比越大,剪力滞、双重效应自振频率差值比越小,剪切自振频率差值比越大;同一跨宽比时,剪力滞和剪切效应对自振频率的削弱程度相当;不同宽高比下,剪力滞效应对自振频率的削弱程度近乎相同,剪切效应影响较为显著;低阶自振频率计算时可按不带悬臂板的箱梁进行计算.
Abstract:In order to reveal the influence of the bending space effect on natural vibration frequency weakening, the additional deflection caused by the shear lag effect was selected as the generalized displacement, and the warping additional deformation of box girder was incorporated into the total kinetic energy of the system. The bending variational solution of the natural vibration frequency of box girder considering the influence of shear deformation, shear lag, and their double effects was established by using the Hamilton principle. The difference ratio parameter of spatial effect on natural vibration frequency weakening was introduced, and the influence of the section size and the side-to-middle span on the difference ratio parameter was analyzed in detail. The example analysis shows that the analytical solution of the natural vibration frequency of the box girder considering shear derformation and double effects is in good agreement with the finite element numerical solution. A larger frequency order indicates a greater weakening degree of each effect to the natural vibration frequency. The double effect is the most significant, which reduces the natural vibration frequency of simply supported and continuous box girders by 4.72% and 4.80% respectively for the first-order frequency. The larger span width ratio, width-to-height ratio, and side-to-middle span ratio indicate a smaller difference ratio of natural vibration frequency. A larger plate width ratio is accompanied by a smaller difference ratio of natural vibration frequency considering shear lag and double effect and a larger difference ratio of natural vibration frequency considering shear derformation . At the same span width ratio, shear lag and shear derformation effects weaken the natural vibration frequency to the same extent. At the different width-to-height ratio ratios, the shear lag effect weakens the natural vibration frequency to almost the same extent, and the shear derformation effect has a more significant impact. Low-order natural vibration frequency can be calculated using a box girder without a cantilever plate.
-
在大功率高转速旋转机械系统中,主动磁悬浮轴承(AMBs)具有无摩擦、无润滑等优点,使得其得到了广泛的应用[1-4]. 然而,如何控制AMBs转子稳定悬浮于期望位置一直以来是一个重要问题. AMBs是一个典型的非线性系统,一般采用局部线性化的方法进行建模[5],进而应用线性控制或非线性控制对其进行精确控制[6]. 工程上一般采用PID控制[7-8],但AMBs在运行中会受到一些扰动,同时工况的改变会使得PID控制的鲁棒性大幅减弱. 因此,需要控制器自身具有较强的鲁棒性以克服AMBs系统的内扰和外扰,从而有效地提高其可靠性.
众多鲁棒控制算法中,滑模控制(SMC)具有适应性强、鲁棒性好、对未知参数和干扰不敏感、易于实现等优点,被广泛应用于包括AMBs在内的各种非线性系统. 然而,简单的滑模控制采用线性滑模函数,系统误差通常只能缓慢地渐近收敛,进而有学者采用基于动态非线性滑模函数的终端滑模控制方法,可以使得系统误差在有限的时间内实现快速收敛[9]. 文献[10]中提出的双滑模控制器用于对开关磁阻电机进行调速;文献[11]针对伺服电机系统设计了一种新的连续终端滑模控制器,能够有效提高系统的鲁棒性;文献[12]针对永磁直线同步电动机位置控制问题,采用非奇异快速终端滑模,从而使系统获得快速、精确的跟踪性能;文献[13]设计了滑模自抗扰控制器,实现了对AMBs的各自由度的解耦,减小了AMBs在高速运转下锥动对控制效果的影响;文献[14]在磁悬浮球系统中将自适应控制与终端滑模控制结合,以此来减小系统抖振,改善悬浮系统的动态性能;文献[15]在磁悬浮球系统中将广义比例积分观测器与终端滑模控制结合,避免切换函数增益过大,有效地减小了系统抖振.
除了对滑模函数的设计,趋近律也需要进行优化,传统趋近律的切换增益为常数,系统抖振的大小与切换增益的大小有关. 超螺旋趋近律把切换增益改为与系统状态有关的幂函数,同时还利用积分函数对切换函数进行处理. 因此,超螺旋趋近律能够使系统状态在滑模面附近平滑且切换增益较小,减小系统抖振[16-17]. WANG等[18]将超螺旋趋近律与非奇异快速终端滑模相结合(SNFTSMC),以实现减小抖振并加快系统误差收敛.
在AMBs系统中,传感器跳动、电磁场波动等外部因素经常会导致AMBs转子位置控制的精度受到影响,而且AMBs系统在建模过程中对系统做了线性化,也导致AMBs数学模型含有未建模部分. 虽然采用SNFTSMC能够抑制未建模部分和外部扰动带来的影响,但这需要增大切换增益,又会造成系统抖振. 因此,SNFTSMC在抑制抖振和扰动之间存在一定的矛盾. 此时,将未建模部分与外部扰动看作一个集总干扰,利用扩张状态感测器(ESO)对集总干扰进行观测,然后补偿给系统,这种方法在伺服系统中已经得到了广泛的应用[19-20]. 通常,线性ESO(LESO)参数易于整定,而非线性ESO(NESO)收敛精度高、鲁棒性强 [21-22].
因此,针对主动磁悬浮轴承转子位置控制中存在响应速度慢、抗干扰能力弱2个问题,本文采用SNFTSMC作为控制算法,并通过ESO对集总干扰观测并补偿到系统中. 由于LESO对于AMBs非线性系统观测效果较差,因此,本文采用了NESO观测器. 根据李雅普诺夫稳定理论证明了所提方法的稳定性,并通过仿真和实验验证了系统具有强的鲁棒性以及低抖振性能.
1. 单自由度AMBs系统模型
以径向单自由度的AMBs为研究对象,研究转子起浮运动. 单自由度AMBs系统通过传感器获得转子实际位移y;实际位移y与期望位置yr的误差e1输入到控制器中,控制器进行运算得到控制信号;之后,在与偏置信号进行差分;最后,将差分后的信号输送到功放器中产生相应的电流,电流被送到电磁铁线圈中,电磁铁产生吸力将转子吸引到期望位置. 具体工作原理如图1.
AMBs采用8级C型结构,根据麦克斯韦公式,2个磁极作用在转子上的电磁力为
f=μ0n2i2Acosα/l2, (1) 式中:i为线圈通入的电流,l为气隙长度,A为单个磁极截面积,μ0为真空磁导率,α为磁极之间夹角的一半,n为线圈匝数.
电磁铁对转子的控制方式为差动控制,在垂直方向上以(i0,y0)作为参考点,如图2. 当转子向上运动的位移为y时,转子与上方电磁铁之间的气隙间距变成y0−y,则上方电磁铁线圈输入的工作电流为i0−i;转子与下方电磁铁之间的气隙间距变成y0+y,下方电磁铁线圈输入的工作电流为i0+i,此时,在垂直方向上的合力为
f(i,y)=μ0An2[(i0−iy0−y)2−(i0+iy0+y)2]cosα. (2) 式(2)中将y、i作为参考点(i0,y0)的邻域,在参考点(i0,y0)处对f(i,y)进行泰勒展开,如式(3).
f(i,y)=kii+ksy+fR, (3) 式中:fR为高次项部分(也称未建模部分);ki、ks分别为电流刚度系数和位移刚度系数,如式(4)、(5).
ki=4μ0N2i0Acosα/y20,ks=4μ0N2i20Acosα/y30. (4) 将重力mg、未知扰动fd都考虑到系统中,则系统的状态方程为
{y=y1,˙y1=y2,˙y2=b0i+a0y1+d, (5) 式中: a0为位移增益,a0=ki/m;b0为位移增益,b0=ks/m;d为集总干扰,d=(fR + fd−mg)/m.
2. SNFTSMC设计
2.1 SNFTSMC设计
基于磁悬浮转子系统的数学模型,设计了非奇异快速终端滑模函数结构,具体表达式如式(6),相应结构如图3.
s=e1+k1|e1|asign(e1)+k2|e2|bsign(e2), (6) 式中:k1、k2、a、b为调节系数,k1>0,k2>0,1<b<2,a>b;e1=y1−yr,e2=˙y1−˙yr.
滑模面为滑模函数s=0,令式(6)为0,得到
0=e1+k1|e1|asign(e1)+k2|e2|bsign(e2). (7) 设误差e1从初始值e1(0)收敛到0所用的时间为tf,对式(7)进行求解,得到tf的解为[11]
tf=∫|e1(0)|0k1/b2(e1+k1xa)1/bde1=b|e1(0)|1−1/bk1(b−1)×F(1b,b−1(a−1)b;1 + b−1(a−1)b;−k1|e1(0)|a−1), (8) 式中:F(·)为高斯几何函数.
对式(6)求导为
˙s=e2+ak1|e1|a−1e2+bk2|e2|b−1˙e2. (9) 忽略式(5)中集总干扰d,˙s=0,可以得到等效控制器为
ieq=1b0(¨yr−a0y1−1bk2|e2|2−b(1+ak1|e1|a−1)sign(e2)). (10) 为了加快趋近速度和减小控制过程中出现的抖 振,采用超螺旋趋近律,具体表达式如式(11),其结构如图4.
超螺旋趋近律的具体表达式为
˙s=−k3|s|csign(s)−k4∫sign(s)dt, (11) 式中:k3、k4、c为调节系数,k3>0,k4>0,0<c<1.
滑模函数s距离滑模面s=0较远时,−k3|s|c值较大,滑模函数s以较大的速度靠近滑模面s=0;滑模函数s距离滑模面s=0较小时,−k3|s|csign(s)值较小,滑模函数s以较小的速度靠近滑模面s=0. 滑模函数中sign函数的切换增益(−k3|s|c)的大小决定抖振剧烈程度,采用超螺旋趋近律既能削弱抖振又能加快系统收敛.
为了能够进一步加快滑模函数s到达滑模面s=0的速度及削弱抖振,可采用式(12)所示的趋近律.
{˙s=−k3|s|gsign(s)−k4∫sign(s)dt,g=γ−λe−η|e1|, (12) 式中:γ、λ、η均为可调系数,g为关于γ、λ、η的指数函数,γ>1,0<λ,η>0.
由式(12)可知,随着e1从初值e1(0)衰减到0,g从最初的较大值γ−λe−η|e1(0)|衰减到γ−λ,在这个过程中−k3|s|g能够以更快的速度从较大值衰减到0,从而加快滑模函数s到达滑模面s=0的速度和减小抖振.
因此,定义AMBs转子系统的切换控制器为
isw=1b0[−k3|s|gsign(s)−k4∫sign(s)dt]. (13) 考虑到系统存在集总干扰,总的控制器为
ic=ieq+isw−1b0Msign(s), (14) 式中:M为集总干扰d的上界,即d⩽|M|.
2.2 稳定性分析
为了证明SNFTSMC控制器的稳定性,构造李雅普诺夫函数为
V(s)=12s2, (15) ˙V(s)=s˙s=s[e2+ak1|e1|a−1e2+bk2|e2|b−1˙e2]=s[e2+ak1|e1|a−1e2+bk2|e2|b−1(b0ic+a0y1+d−¨yr)]=s[e2+ak1|e1|a−1e2+bk2|e2|b−1(b0isw−Msign(s)+d−1bk2|e2|2−b(1+ak1|e1|a−1)×sign(e2))]=s[bk2|e2|b−1(d−Msign(s)+b0isw)]=bk2|e2|b−1(ds−M|s|−k3|s|g+1−k4∫|s|dt). (16) 当e2≠0时,已知k2、k3、k4、b均大于0,且|d|≤M,那么此时有
˙V(s)<bk2|e2|b−1(−k3|s|g+1−k4∫|s|dt)<0. (17) 此时,滑模函数s将在有限时间内到达滑模面s=0.
当e2=0时,联立式(14)与式(5)中,有
˙e2=−k3|s|gsign(s)−k4∫sign(s)dt+d−Msign(s). (18) 根据式(18),当滑模函数s>0时,˙e2<0;当滑模函数s<0时,˙e2<0. 图5为该控制器下的系统相轨迹,以滑模函数s2为例,e2=0、˙e2<0时,e2必然会在某个邻域(0, + δ)内减小,此时滑模函数s2会必然会向下运动;当滑模函数s2到达邻域(0, + δ)时,e2≠0,滑模函数s2将会根据式(17)得出的结论到达滑模面s=0,滑模函数s4同理.
3. 考虑NESO的SNFTSMC设计
3.1 ESO设计
集总干扰d是未知的,很难确定其具体的上界,而为了保证系统的稳定,一般上界M取值较大,将会加剧系统抖振. 为避免这种情况,本文通过设计ESO,并利用ESO对集总干扰d进行观测,得到较精确的观测值,然后将观测值补偿到控制器中. 本节先后分别对LESO与NESO进行研究与分析.
对于二阶的AMBs转子系统,将集总干扰d扩张为新的状态变量y3,式(5)可以改写为
{˙y1=y2,˙y2=b0i+a0y1+y3,˙y3=h, (19) 式中:h为集总干扰d的变化率.
根据式(19)可以写出LESO表达式为
{˙z1=z2−L1θ1,˙z2=b0i+a0z1+z3−L2θ1,˙z3=−L3θ1, (20) 式中:L1、L2、L3为LESO增益,z1、z2、z3分别为y1、y2、y3的观测值,θ1=z1−y1为观测误差.
式(20)减去式(19)得到误差状态方程为
{˙θ1=θ2−L1θ1,˙θ2=a0θ1+θ3−L2θ1,˙θ3=−h−L3θ1, (21) 式中:θ2=z2−y2,θ3=z3−y3.
式(21)经过拉普拉斯变换后,有
{θ2(s)=(s+L1)θ1(s),θ3(s)=sθ2(s)+(L2−a0)θ1(s),h(s)=sy3(s)=−sθ3(s)−L3θ1(s). (22) 整理式(22),得到θ3与−y3之间的传递函数为
θ3−y3=s3+L1s2+(L2−a0)ss3+L1s2+(L2−a0)s+L3. (23) 为了使系统能够稳定,假设式(23)有3个极点(s1、s2、s3)都位于左半平面,p1=−ω0、p2=−0.5ω0 + j0.5ω0、p3=−0.5ω0−j0.5ω0,ω0为带宽并大于0,那么有
s3+L1s2+(L2−a0)s+L3=(s−p1)(s−p2)(s−p3). (24) 可以解得
[L1L2L3]=[2ω01.5ω20+a00.5ω30]. (25) 将式(25)带到式(23)中可得
θ3−y3=s3+2ω0s2+1.5ω20ss3+2ω0s2+1.5ω20s+0.5ω30. (26) 根据式(26)做出不同带宽下的Bode图,如图6. 图6中:y3频率较低时,z3对y3的跟踪效果较好;随着y3频率的增大,z3对y3的跟踪性能逐渐变差;带宽增大后,z3对y3跟踪效果逐渐变好,但带宽太大容易对系统中其他噪声敏感.
由于LESO对集总扰动观测精度有限,现采用NESO对集总干扰进行观测,将式(20)改写为
{˙z1=z2−β1u1(θ1),˙z2=b0i+a0z1+z3−β2u2(θ1),˙z3=−β3u3(θ1), (27) 式中:β1、β2、β3为待设计的观测器增益,均大于0;u1(θ1)、u2(θ1)、u3(θ1)为关于θ1的非线性函数,如式(28).
{u1(θ1)=θ1,u2(θ1)=|θ1|12sign(θ1),u3(θ1)=|θ1|14sign(θ1). (28) NESO的参数一般很难通过理论去整定,通常根据经验来进行设计. 选择合适的β1、β2、β3,能够使得观测误差θ1、θ2、θ3在有限时间内收敛到0.
NESO的结构框图如7.
3.2 含NESO的SNFTSMC稳定性分析
式(14)中所提到的sign函数切换增益为−(k3|s|g+M)/b0,其中−k3|s|g/b0的大小与系统状态有关,产生的抖振很小,而−M/b0为常值,会导致系统产生较大抖振. 因此,需要通过NESO对系统抖振进行补偿,进一步将控制器设计为
ic∗=ieq+isw−1b0z3. (29) 接着,为了验证所提方法对系统稳定性产生的影响,对式(29)进行李亚普诺夫稳定性分析,即
˙V(s)=s˙s=s[bk2|e2|b−1(d+b0isw−z3)]=bk2|e2|b−1(ds−z3s−k3|s|g+1−k4∫|s|dt)<bk2|e2|b−1(−k3|s|g+1+|θ3||s|−k4∫|s|dt). (30) 根据对NESO的设计,θ3会收敛到0,可得到:
˙V(s)<bk2|e2|b−1(−k3|s|c+1−k4∫|s|dt)<0. (31) 通过分析得知,滑模函数s能够在有限时间内到达滑模面s=0,有效证明了所提方法的稳定性,进而搭建如图8所示的AMBs系统整体控制结构.
4. 仿真分析
表1为AMBs具体参数.
表 1 AMBs参数Table 1. Parameters of AMBs参数 值 磁极面积/mm2 720 匝数/圈 150 气隙长度/mm 0.4 偏置电流/A 2 转子质量/kg 15 电流刚度系数/(N·A−1) 939.5 位移刚度系数/(N·mm−1) 4697.5 为了能够对比出SNFTSMC的优越性能,在验证中加入传统SMC,表2为各个控制器参数.
表 2 控制器参数Table 2. Parameters of controller控制器 值 SNFTSMC k1=1、k2=0.1、k3=80、k4=50、a=2.5、b=1.5、γ=1.5、λ=1、η=0.5、M=15 SMC k1=30、k2=50、c=10、M=15 忽略集总扰动时SNFTSMC、SMC分别为
{iSNFTSMC=ieq+isw,iSMC =1b0[¨yr−ce2−a0y1−k1s−k2sign(s)]. (32) 定义控制电流平均值为
iavg=∑Nj=1|ij|N, (33) 式中:ij为第j个采样点的电流值,1≤j≤N ,N为采样点数.
根据式(32)中的控制器进行仿真,图9为起浮测试下的位移与控制电流. SNFTSMC、SMC到达目标位置的时间分别为0.38、0.62 s,SNFTSMC、SMC的最大控制电流分别为3.14、4.56 A. 根据式(33)得到SNFTSMC与SMC的电流平均值为分别为0.24、0.89 A.
为探究控制器的追踪性能,对正弦波、方波进行追踪. 图10为正弦追踪下的结果,SNFTSMC、SMC追踪到正弦波的时间分别为0.41、0.62 s,控制电流最大值分别为3.60、6.17 A,电流平均值分别为1.04、1.16 A. 图11为方波追踪下的仿真结果,将方波追踪中4个阶段的稳定时间间隔累加起来,SNFTSMC、SMC所用时间分别为1.24、2.36 s;控制电流最大值分别为3.12、4.56 A;电流平均值分别为0.24、0.89 A.
为对比LESO与NESO的观测性能,对正弦扰动sin(2πfot)进行观测,其频率fo从0增加到300 Hz. LESO带宽为500,NESO的观测增益β1、β2、β3分别为
15000 、3000 、50000 . 图12为2种ESO对正弦信号的观测结果. 随着频率增大,2种ESO的观测性能均随之下降;在低频段中NESO观测器性能较好,其观测误差很小,而LESO在低频段中其观测误差依然很大,并且此时还是在LESO带宽取值较大的情况下. 因此,LESO观测性能不如NESO. 所以选用NESO对集总干扰进行观测.将外部扰动与未建模部分对考虑到系统中,SNFTSMC的控制器设计为式(14),SMC设计为
iSMC=1b0[¨yr−ce2−a0y1−k1s−(k2+M)sign(s)]. (34) 假设集总干扰d=−12.5 + 2.5sin(20πt),采用考虑到集总干扰而设计的控制器进行仿真,图13为抗干扰测试下的转子位移波形与控制电流波形. 由图13可知:SNFTSMC、SMC到达目标位置的时间分别为0.45、0.63 s,相较于没有集总干扰的情况下系统收敛时间增加;控制电流最大值分别为3.38、4.80 A,控制电流平均值分别为0.43、1.18 A;考虑到扰动后控制电流最大值与控制电流平均值都略微增大,并且SMC抖振加剧、SNFTSMC产生了小幅度抖振.
集总干扰的存在会增大抖振,将SNFTSMC与NESO相结合,以此来减小由集总扰动引起的系统抖振. 图14为SNFTSMC+NESO、SMC+NESO这2种控制方法的仿真结果. 由图14可知:SNFTSMC+NESO、SMC+NESO到达目标位置的时间分别为0.40 s、0.62 s,与没有集总干扰的情况下系统收敛时间相近,即NESO能够消除集总干扰带来的影响;SNFTSMC+NESO、SMC+NESO在稳定时位移误差均为0,控制电流最大值分别为3.14、4.56 A,控制电流平均值分别为0.44、0.90 A.
5. 实验验证
为验证所提方法的正确性和有效性,搭建了基于RT-Lab的磁悬浮轴承转子系统实验平台. 实验装置由磁悬浮电机性能测试平台、功放测试平台、径向磁悬浮轴承和轴向磁悬浮轴承等组成,如图15所示.
首先,通过采用SNFTSMC、SMC 2种控制器进行转子起伏测试,转子起浮位移和电流信号如图16所示. 可以得知,采用SNFTSMC、SMC转子从底端上升到目标位置所用的时间分别为0.41、0.94 s,并且SMC的控制电流存在剧烈的抖振,SNFTSMC、SMC的电流平均值分别为0.53、1.68 A.
其次,为验证控制器的抗干扰性能,对转子施加正弦扰动进行起浮测试,转子起浮位移和电流信号如图17所示. 图17中SNFTSMC、SMC到达目标位置所用的时间分别为0.43、0.98 s,SNFTSMC、SMC的电流平均值分别为0.84、2.00 A,并且SNFTSMC也产生了抖振.
最后,引入NESO来对干扰进行补偿,转子位移和控制电流如图18所示. 图18中SNFTSMC+NESO和SMC+NESO到达目标位置所用的时间分别为0.42、0.95 s,其电流平均值分别为1.65、0.66 A,2种控制器下的电流抖振得到了有效减小.
6. 结 论
1) 工程设计中由于考虑算法的简明性,通常会采用传统滑模控制器,若要提高主动磁悬浮轴承转子位置的动态控制性能,可将传统滑模控制率改进为本文所提出超螺旋趋近律.
2) 非奇异快速终端滑模函数的设计能够使系统误差得到快速收敛,而超螺旋趋近律利用幂函数以及对滑模函数的积分使得切换增益在滑模面s=0处较小,实际工况中可根据快速性和鲁棒性要求进行选择滑模函数和趋近律的设计.
3) 引入的NESO能够对系统内外扰动进行观测并补偿到系统中,有效减小扰动对控制结果的影响,但实际工况下观测值补偿可能是离线的,在线补偿对控制器设计要求较高. 特别是要考虑观测器引起的相位滞后,在控制器设计过程中选择合适的前馈补偿将相位进行补偿.
致谢:感谢陕西省教育厅一般专项(青年)23JK0339资助;海洋工程全国重点实验室(上海交通大学)专项经费号GKZD010089.
-
表 1 不等跨连续梁自振频率参数影响因子
Table 1. Influence factors of natural vibration frequency parameters of continuous girders with unequal span
lb/l n 1 2 3 4 5 6 0.5 1.250 2.000 2.250 2.500 3.250 4.000 0.6 1.215 1.777 1.926 2.340 3.137 3.503 0.7 1.174 1.565 1.699 2.264 2.908 3.060 0.8 1.125 1.390 1.542 2.200 2.613 2.728 0.9 1.066 1.248 1.437 2.118 2.351 2.500 1.0 1.000 1.132 1.368 2.000 2.135 2.365 表 2 简支箱梁弯曲自振频率对比
Table 2. Comparison of bending natural vibration frequency of simply supported box girder
Hz n f0 fsl fsd fss ANSYS 结果 Midas 结果 1 3.243 3.160 3.167 3.090 3.108 3.121 2 12.973 11.663 11.871 10.874 10.783 11.124 3 29.188 23.250 24.349 20.851 22.957 23.385 4 51.890 36.511 38.927 31.891 33.325 33.891 5 81.079 51.398 54.491 43.838 44.681 45.332 6 116.753 68.215 70.429 56.690 59.690 60.449 表 3 连续箱梁弯曲自振频率对比
Table 3. Comparison of bending natural vibration frequency of continuous box girder
Hz n f0 fsl fsd fss ANSYS 结果 Midas 结果 1 3.246 3.160 3.170 3.090 3.192 3.221 2 4.157 4.019 4.033 3.908 4.036 4.242 3 6.073 5.778 5.815 5.556 5.356 5.667 4 12.978 11.663 11.875 10.874 10.048 10.524 5 14.794 13.097 13.385 12.135 11.877 12.487 6 18.150 15.648 16.093 14.356 12.366 13.191 -
[1] 《中国公路学报》编辑部. 中国桥梁工程学术研究综述·2021[J]. 中国公路学报, 2021, 34 (2): 1-97.Editorial Department of China Journal of Highway and Transpor. Review on China’s bridge engineering research: 2021[J]. China Journal of Highway and Transport, 2021, 34 (2): 1-97. [2] 冀伟,罗奎,马万良,等. 装配式波形腹板钢箱-混凝土组合梁桥动力特性分析与试验研究[J]. 振动与冲击,2020,39(20): 1-7,16.JI Wei, LUO Kui, MA Wanliang, et al. Dynamic characteristics analysis and experimental study of a fabricated corrugated web steel box-concrete composite girder bridge[J]. Journal of Vibration and Shock, 2020, 39(20): 1-7,16. [3] DOMAGALSKI Ł. Comparison of the natural vibration frequencies of Timoshenko and Bernoulli periodic beams[J]. Materials, 2021, 14(24): 7628.1-7628.22. [4] JI W, LUO K, MA W L. Natural vibration frequency analysis for a PC continuous box-girder bridge with corrugated steel web based on the dynamic stiffness matrix[J]. Journal of Highway and Transportation Research and Development (English Edition), 2020, 14(1): 65-74. doi: 10.1061/JHTRCQ.0000718 [5] SUN Q K, ZHANG N, LIU X. A dynamic stiffness matrix method for free vibrations of partial-interaction composite beams based on the Timoshenko beam theory[J]. Journal of Sound and Vibration, 2022, 520: 116579.1-116579.14. [6] JIANG L Z, LAI Z P, ZHOU W B. Improved finite beam element method for analyzing the flexural natural vibration of thin-walled box girders[J]. Advances in Mechanical Engineering, 2017, 9(8): 1888-1902. [7] 房建,韦智敏,郑稳稳,等. 城市高架轨道交通引发的箱梁振动特性分析[J]. 铁道学报,2022,44(4): 136-142.FANG Jian, WEI Zhimin, ZHENG Wenwen, et al. Study on vibration characteristics of elevated box girders induced by track irregularities[J]. Journal of the China Railway Society, 2022, 44(4): 136-142. [8] 张新亚,雷晓燕,罗锟. TMD控制高架轨道箱梁结构振动的模型试验研究[J]. 振动与冲击,2021,40(16): 220-226,233.ZHANG Xinya, LEI Xiaoyan, LUO Kun. A model test study on controlling vibration of an elevated track box girder structure with TMD[J]. Journal of Vibration and Shock, 2021, 40(16): 220-226,233. [9] 郑尚敏,万水,程海根. 单箱多室波形钢腹板组合箱梁动力特性研究[J]. 铁道工程学报,2017,34(9): 41-46.ZHENG Shangmin, WAN Shui, CHENG Haigen. Research on the dynamic characteristics of multi-room single box composite girder with corrugated steel webs[J]. Journal of Railway Engineering Society, 2017, 34(9): 41-46. [10] JIANG L Z, YU J, ZHOU W B, et al. Analysis of flexural natural vibrations of thin-walled box beams using higher order beam theory[J]. The Structural Design of Tall and Special Buildings, 2019, 28(14): 1659.1-1659.15. [11] 李丽园,周茂定,张元海. 薄壁连续箱梁的弯曲自振频率分析[J]. 东南大学学报(自然科学版),2018,48(1): 99-105.LI Liyuan, ZHOU Maoding, ZHANG Yuanhai. Analysis of bending natural vibration frequency of thin-walled continuous box girder[J]. Journal of Southeast University (Natural Science Edition), 2018, 48(1): 99-105. [12] 周茂定,蔺鹏臻,李丽园. 考虑各板面内剪切影响的箱梁竖向纯弯自振特性分析[J]. 振动工程学报,2020,33(6): 1162-1169.ZHOU Maoding, LIN Pengzhen, LI Liyuan. Analysis of vertical pure bending natural vibration characteristics of box girder considering the influence of in-plane shear[J]. Journal of Vibration Engineering, 2020, 33(6): 1162-1169. [13] ZHANG Y T, JIANG L Z, ZHOU W B, et al. Shear lag effect and accordion effect on dynamic characteristics of composite box girder bridge with corrugated steel webs[J]. Applied Sciences, 2020, 10(12): 4346.1-4346.13. [14] 项贻强,邱政,何百达,等. 具有体外预应力索的快速施工群钉式钢-混组合小箱梁自振特性分析[J]. 中国公路学报,2020,33(1): 100-110.XIANG Yiqiang, QIU Zheng, HE Baida, et al. Analytical approach for the free vibration of accelerated construction steel-concrete composite small box girders with external prestressed tendons and group studs[J]. China Journal of Highway and Transport, 2020, 33(1): 100-110. [15] SHEN J, PAGANI A, ARRUDA M R T, et al. Exact component-wise solutions for 3D free vibration and stress analysis of hybrid steel-concrete composite beams[J]. Thin-Walled Structures, 2022, 174: 109094.1-109094.13. [16] 冀伟,温凯康,罗奎. 基于Galerkin法的新型波形钢腹板箱梁桥动力特性研究[J]. 工程科学与技术,2022,54(3): 131-138.JI Wei, WEN Kaikang, LUO Kui. Dynamic characteristics of new type composite box girder bridge with corrugated steel webs based on Galerkin method[J]. Advanced Engineering Sciences, 2022, 54(3): 131-138. [17] CAI Y X, ZHANG K, YE Z J, et al. Influence of temperature on the natural vibration characteristics of simply supported reinforced concrete beam[J]. Sensors, 2021, 21(12): 4242.1-4242.14. [18] QIU C, XIE X L, YANG C J, et al. Methods of improving the natural vibration characteristics of the through tied-arch bridge and test verification[J]. International Journal of Steel Structures, 2022, 22(1): 343-360. doi: 10.1007/s13296-022-00577-3 [19] 张玉元. 考虑翼板横向位移影响的箱梁弯曲静动力特性分析理论及其应用研究[D]. 兰州: 兰州交通大学, 2020. -