• ISSN 0258-2724
  • CN 51-1277/U
  • EI Compendex
  • Scopus 收录
  • 全国中文核心期刊
  • 中国科技论文统计源期刊
  • 中国科学引文数据库来源期刊

侧风作用下大跨拱桥变形对高速列车行车平稳性的影响机理

李小珍 周彦希 王铭

李小珍, 周彦希, 王铭. 侧风作用下大跨拱桥变形对高速列车行车平稳性的影响机理[J]. 西南交通大学学报. doi: 10.3969/j.issn.0258-2724.20220598
引用本文: 李小珍, 周彦希, 王铭. 侧风作用下大跨拱桥变形对高速列车行车平稳性的影响机理[J]. 西南交通大学学报. doi: 10.3969/j.issn.0258-2724.20220598
LI Xiaozhen, ZHOU Yanxi, WANG Ming. Influence Mechanism of Long-Span Arch Bridge Deformation on Running Stability of High-Speed Trains Under Crosswind[J]. Journal of Southwest Jiaotong University. doi: 10.3969/j.issn.0258-2724.20220598
Citation: LI Xiaozhen, ZHOU Yanxi, WANG Ming. Influence Mechanism of Long-Span Arch Bridge Deformation on Running Stability of High-Speed Trains Under Crosswind[J]. Journal of Southwest Jiaotong University. doi: 10.3969/j.issn.0258-2724.20220598

侧风作用下大跨拱桥变形对高速列车行车平稳性的影响机理

doi: 10.3969/j.issn.0258-2724.20220598
基金项目: 国家自然科学基金(U1434205、51708465)
详细信息
    作者简介:

    李小珍(1970—),男,教授,研究方向为风-车-桥耦合振动,E-mail:xzhli@swjtu.edu.cn

  • 中图分类号: U441.7;U211

Influence Mechanism of Long-Span Arch Bridge Deformation on Running Stability of High-Speed Trains Under Crosswind

  • 摘要:

    为探求侧风下的拱桥变形对列车平稳性的作用机理,通过风-车-桥耦合系统得到跨中横、竖向位移,分析不同风速、车速下的列车行车平稳性,量化桥梁变形对风-车-桥系统中列车横、竖向加速度的贡献;结合车体加速度响应的敏感波长及桥梁变形的时频特性,分析桥梁变形对行车平稳性影响机理. 结果表明:桥梁竖向位移差异较横向位移差异较小,且主要位移由车致桥梁变形产生,最大幅值达到了−9.2 mm;在列车及风荷载作用下,桥梁横向及竖向位移较为显著,但其对列车平稳性的影响主要体现在交界墩位置处,约为其余位置响应的4倍;除交界墩区域,桥上列车的行车平稳性主要由风致列车振动及轨道不平顺决定;车体横向及竖向加速度功率谱密度分布与轨道不平顺的波长密切相关,其对应的敏感波长区间均小于120 m;车体横向及竖向加速度主要受车辆荷载作用引起的桥梁变形影响,而风荷载引起的桥梁变形主要分布于主跨范围内,波长大于120 m,因而未对列车车体加速度产生显著影响.

     

  • 图 1  风-车-桥系统(单位:m)

    Figure 1.  Wind, vehicle, and bridge system (unit: m)

    图 2  参数定义及风洞试验

    Figure 2.  Parameter definition and wind tunnel test

    图 3  桥面脉动风速与行进列车仿真时程

    Figure 3.  Simulated time history of fluctuating wind speed and running train at bridge deck

    图 4  桥梁跨中横向、竖向变形

    Figure 4.  Horizontal and vertical deformation of bridge mid-span

    图 5  车体横、竖向加速度时程图

    Figure 5.  Time history of horizontal and vertical acceleration of train

    图 6  车速对工况三车体横、竖向加速度影响

    Figure 6.  Influence of train speed on horizontal and vertical acceleration of train under working condition No.3

    图 7  风速对工况三车体横、竖向加速度影响

    Figure 7.  Influence of wind speed on horizontal and vertical acceleration of train under working condition No.3

    图 8  横、竖向加速度标准差占比统计

    Figure 8.  Standard deviation ratio of horizontal and vertical acceleration

    图 9  横、竖向加速度峰值占比统计

    Figure 9.  Peak ratio of horizontal and vertical acceleration

    图 10  车体加速度敏感波长分析

    Figure 10.  Analysis of sensitive wavelength of train acceleration

    图 11  轮对横向位移时程与小波系数图

    Figure 11.  Time history of wheel set horizontal displacement and wavelet coefficients

    图 12  轮对竖向位移时程和小波系数图

    Figure 12.  Time history of wheel set vertical displacement and wavelet coefficients

    表  1  列车自振特性

    Table  1.   Vibration characteristics of the train

    阶数频率/Hz振型描述
    10.451车体绕下心
    20.803车体绕上心
    30.840车体沉浮
    40.878车体摇头
    51.056车体点头
    下载: 导出CSV

    表  2  风-车-桥系统气动参数

    Table  2.   Aerodynamic parameters of wind-vehicle-bridge system

    对象CDCLCM
    主梁1.0980.010−0.036
    列车1.2570.0700.068
    拱肋0.600
    下载: 导出CSV

    表  3  风-车-桥耦合系统计算工况

    Table  3.   Working conditions of wind-vehicle-bridge coupling system

    工况车辆风荷载轨道不平顺桥梁风荷载桥梁位移
    工况 1
    工况 2
    工况 3
    工况 4
    下载: 导出CSV
  • [1] TAN Y B, HE X W, SHI L, et al. Reinforcement effect evaluation on dynamic characteristics of an arch bridge based on vehicle-bridge coupled vibration analysis[J]. Computer Modeling in Engineering & Sciences, 2022, 131(2): 1041-1061.
    [2] 唐俊峰,何玮,郭向荣,等. 风攻角对强风下大跨度斜拉桥车-桥耦合振动的影响[J]. 中南大学学报(自然科学版),2018,49(7): 1760-1767.

    TANG Junfeng, HE Wei, GUO Xiangrong, et al. Influence of wind attack angle on vehicle-bridge coupling vibration for long-span cable-stayed bridge during strong wind[J]. Journal of Central South University (Science and Technology), 2018, 49(7): 1760-1767.
    [3] 徐昕宇. 复杂山区铁路风—车—桥系统耦合振动研究[D]. 成都: 西南交通大学, 2017.
    [4] QIN S Q, FENG J C, ZHOU Y L, et al. Investigation on the dynamic impact factor of a concrete filled steel tube butterfly arch bridge[J]. Engineering Structures, 2022, 252: 113614.1-113614.14.
    [5] JING H M, LIAO H L, MA C M, et al. Field measurement study of wind characteristics at different measuring positions in a mountainous valley[J]. Experimental Thermal and Fluid Science, 2020, 112: 109991.1-109991.18.
    [6] LIU C, FU L, YANG D, et al. Non-gaussian Lagrangian stochastic model for wind field simulation in the surface layer[J]. Advances in Atmospheric Sciences, 2020, 37(1): 90-104. doi: 10.1007/s00376-019-9052-7
    [7] 靖洪淼,廖海黎,周强,等. 一种山区峡谷桥址区风场特性数值模拟方法[J]. 振动与冲击,2019,38(16): 200-207.

    JING Hongmiao, LIAO Haili, ZHOU Qiang, et al. A numerical simulation method for wind field characteristics of mountainous valley at bridge site[J]. Journal of Vibration and Shock, 2019, 38(16): 200-207.
    [8] 沈炼,华旭刚,韩艳,等. 高精度入口边界的峡谷桥址风场数值模拟[J]. 中国公路学报,2020,33(7): 114-123.

    SHEN Lian, HUA Xugang, HAN Yan, et al. Numerical simulation of wind field at canyon bridges with high precision inlet boundary[J]. China Journal of Highway and Transport, 2020, 33(7): 114-123.
    [9] LI X Z, TAN Y L, QIU X W, et al. Wind tunnel measurement of aerodynamic characteristics of trains passing each other on a simply supported box girder bridge[J]. Railway Engineering Science, 2021, 29(2): 152-162. doi: 10.1007/s40534-021-00231-4
    [10] HE X H, LI H, HU L, et al. Crosswind aerodynamic characteristics of a stationary interior railway carriage through a long-span truss-girder bridge[J]. Engineering Structures, 2020, 210: 110350.1-110350.19.
    [11] MA C M, PEI C, LIAO H L, et al. Field measurement and wind tunnel study of aerodynamic characteristics of twin-box girder[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2020, 202: 104209.1-104209.14.
    [12] 于洪刚. 大跨度拱桥气动参数识别及风致响应研究[D]. 上海: 同济大学, 2008.
    [13] 李永乐,房忱,向活跃. 风-浪联合作用下大跨度桥梁车-桥耦合振动分析[J]. 中国公路学报,2018,31(7): 119-125.

    LI Yongle, FANG Chen, XIANG Huoyue. Coupled vibration analysis of vehicle-bridge for long-span bridge under wind and wave[J]. China Journal of Highway and Transport, 2018, 31(7): 119-125.
    [14] 韩万水,刘焕举,包大海,等. 大跨钢桁梁悬索桥风-车-桥分析系统建立与可视化实现[J]. 土木工程学报,2018,51(3): 99-108.

    HAN Wanshui, LIU Huanju, BAO Dahai, et al. Establishment and visualization of wind-vehicle-bridge analysis system for the large-span steel truss suspension bridge[J]. China Civil Engineering Journal, 2018, 51(3): 99-108.
    [15] 韩艳,陈浩,刘跃飞,等. 桥梁抖振力空间相关性对风-车-桥耦合动力响应的影响[J]. 湖南大学学报(自然科学版),2015,42(9): 82-88.

    HAN Yan, CHEN Hao, LIU Yuefei, et al. Effect of the coherence of buffeting forces of bridges on the coupled dynamic responses of wind-vehicle-bridge system[J]. Journal of Hunan University (Natural Sciences), 2015, 42(9): 82-88.
    [16] 李沅璋. 基于梁格法的刚构拱桥静动力力学性能分析[D]. 北京: 北京交通大学, 2017.
    [17] 刘德军. 风—列车—线路—桥梁系统耦合振动研究[D]. 成都: 西南交通大学, 2010.
    [18] 辛莉峰,李小珍,朱艳. 基于eFAST方法的车—线—桥耦合系统全局敏感性分析[J]. 中国铁道科学,2019,40(4): 46-51.

    XIN Lifeng, LI Xiaozhen, ZHU Yan. Global sensitivity analysis of vehicle-track-bridge coupling system based on eFAST method[J]. China Railway Science, 2019, 40(4): 46-51.
    [19] 徐磊,翟婉明. 横风和轨道不平顺联合作用下的车辆-轨道系统随机分析模型[J]. 振动工程学报,2018,31(1): 39-48.

    XU Lei, ZHAI Wanming. The vehicle-track stochastic model considering joint effects of cross-winds and track random irregularities[J]. Journal of Vibration Engineering, 2018, 31(1): 39-48.
    [20] BULJAC A, KOZMAR H, POSPÍŠIL S, et al. Effects of wind-barrier layout and wind turbulence on aerodynamic stability of cable-supported bridges[J]. Journal of Bridge Engineering, 2020, 25(12): 04020102.1-04020102.18.
    [21] 宋玉鹏,陈建兵,彭勇波. 二维空间脉动风场波数-频率联合功率谱表达的FFT模拟[J]. 振动工程学报,2020,33(4): 660-666.

    SONG Yupeng, CHEN Jianbing, PENG Yongbo. Simulation of fluctuating wind field in two-spatial dimensions by FFT implementation of wavenumber-frequency joint power spectrum[J]. Journal of Vibration Engineering, 2020, 33(4): 660-666.
    [22] 李小珍, 张效邦, 郑净等. 400 km/h高铁桥上直立式声屏障列车风致振动研究[J/OL]. 西南交通大学学报: 1-9[2022-11-26]. http://kns.cnki.net/kcms/detail/51.1277.U.20220927.1821.002.html
    [23] 陈士军,凌贤长,朱占元,等. 轨道高低不平顺谱分析[J]. 地震工程与工程振动,2012,32(5): 33-38.

    CHEN Shijun, LING Xianchang, ZHU Zhanyuan, et al. Analyses of track vertical profile irregularity spectra[J]. Journal of Earthquake Engineering and Engineering Vibration, 2012, 32(5): 33-38.
  • 加载中
图(12) / 表(3)
计量
  • 文章访问数:  104
  • HTML全文浏览量:  50
  • PDF下载量:  26
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-09-13
  • 修回日期:  2022-11-30
  • 网络出版日期:  2023-11-17

目录

    /

    返回文章
    返回