• ISSN 0258-2724
  • CN 51-1277/U
  • EI Compendex
  • Scopus 收录
  • 全国中文核心期刊
  • 中国科技论文统计源期刊
  • 中国科学引文数据库来源期刊

面向微细加工的二自由度磁悬浮平台

魏发南 刘英

魏发南, 刘英. 面向微细加工的二自由度磁悬浮平台[J]. 西南交通大学学报, 2023, 58(6): 1318-1327. doi: 10.3969/j.issn.0258-2724.20220583
引用本文: 魏发南, 刘英. 面向微细加工的二自由度磁悬浮平台[J]. 西南交通大学学报, 2023, 58(6): 1318-1327. doi: 10.3969/j.issn.0258-2724.20220583
WEI Fanan, LIU Ying. Two-Degree-of-Freedom Maglev Platform for Micro Machining[J]. Journal of Southwest Jiaotong University, 2023, 58(6): 1318-1327. doi: 10.3969/j.issn.0258-2724.20220583
Citation: WEI Fanan, LIU Ying. Two-Degree-of-Freedom Maglev Platform for Micro Machining[J]. Journal of Southwest Jiaotong University, 2023, 58(6): 1318-1327. doi: 10.3969/j.issn.0258-2724.20220583

面向微细加工的二自由度磁悬浮平台

doi: 10.3969/j.issn.0258-2724.20220583
基金项目: 国家自然科学基金(61803088);辽宁省自然科学基金联合基金(2021-KF-22-13);福建省自然科学基金(2022J01543)
详细信息
    作者简介:

    魏发南(1987—),男,副教授,博士,研究方向为软体机器人、磁控微微型机器人、光控微纳米机器人,E-mail:weifanan@fzu.edu.cn

  • 中图分类号: TH161;TN249

Two-Degree-of-Freedom Maglev Platform for Micro Machining

  • 摘要:

    为消除激光微细加工移动台中的机械摩擦,提出一种由三组子单元共同悬浮驱动的新型磁浮平台. 首先,介绍平台结构及其工作原理,三组子单元具有相同的结构,由永磁体和电磁线圈构成;分析线圈对永磁体的作用力,并对磁悬浮平台能够实现稳定悬浮的平面范围进行讨论;其次,建立磁悬浮平台的平面内的动力学模型以及子单元位移与平台位移的变换方程;再者,基于分散控制策略,设计子单元系统相应的模糊PD (proportional-derivative)控制器;最后,搭建实物平台,并对其进行静态悬浮实验、步进响应实验、双轴组合工作实验. 结果表明:该磁悬浮平台在 ±2 mm的平面范围内可忽略竖直方向的运动控制;在静态悬浮时,磁悬浮平台在x方向均方根误差仅为2.95 μm,最大跟踪误差为11 μm;同时磁悬浮平台具备4 mm的运动行程以及双轴组合工作能力.

     

  • 图 1  磁悬浮平台三维模型

    Figure 1.  Three-dimensional model of maglev platform

    图 2  不同偏移距离下电磁力在xyz方向的分量

    Figure 2.  Components of electromagnetic force in x, y, and z directions at different offset distances

    图 3  竖直方向上的电磁力与永磁斥力之和以及k

    Figure 3.  Sum of electromagnetic force and permanent magnet repulsion in vertical direction and k value

    图 4  磁悬浮平台的受力分析

    Figure 4.  Force analysis of maglev platform

    图 5  模糊控制器流程

    Figure 5.  Flow chart of fuzzy controller

    图 6  单元1的x方向控制框图

    Figure 6.  Control block diagram of unit 1 in x direction

    图 7  磁悬浮平台的整体架构

    Figure 7.  Overall structure of maglev platform

    图 8  x方向上的0.5 mm 阶跃响应曲线

    Figure 8.  Step response curve of 0.5 mm in x direction

    图 9  x方向上的余弦跟随曲线

    Figure 9.  Sinusoidal following curve in x direction

    图 10  磁悬浮平台在x、y方向的静态悬浮过程

    Figure 10.  Static levitation process of maglev platform in x and y directions

    图 11  平台小步长响应曲线

    Figure 11.  Small step response curves of platform

    图 12  平台进行直径1 mm的圆周运动

    Figure 12.  Circular motion of platform within diameter of 1 mm

    图 13  实测值与参考值的误差分布

    Figure 13.  Error distribution of measured and reference values

    表  1  拟合后的各项系数

    Table  1.   Various coefficients after fitting

    系数 km1/(N·m−1 ke1/(N·m−1 kI1/(N·A−1
    数值 42.030 0.039 −0.617
    下载: 导出CSV

    表  2  模糊控制器参数

    Table  2.   Parameters of fuzzy controller

    项目$ E$$ {E}_{{\rm{c}}} $$ \Delta {K}_{{\rm{p}}} $$ \Delta {K}_{{\rm{d}}} $
    基本论域[−2,2][−1,1][−0.01,0.01][−0.1,0.1]
    模糊论域[−6,6][−6,6][−6.00,6.00][−6.0,6.0]
    模糊子集{NB,NM,NS,ZO,PS,PM,PB}
    量化因子1/31/61/6001/60
    下载: 导出CSV

    表  3  $ {\Delta K}_{{\rm{p}}} $的模糊规则

    Table  3.   Fuzzy rule of $ {\Delta K}_{{\rm{p}}} $

    $ {E}_{{\rm{c}}} $$ E $
    NBNMNSZOPSPMPB
    NBNBNBNMZOZOZOPS
    NMNBNMNMZOZOPSPS
    NSNMNMNSZOPSPMPM
    ZONMNMNSNSPSPMPM
    PSNMNSNSNSNMPBPB
    PMNSNSZOPMPMPBPB
    PBZOZOZOPMPBPBPB
    下载: 导出CSV

    表  4  $ {\Delta K}_{{\rm{d}}} $的模糊规则

    Table  4.   Fuzzy rule of $ {\Delta K}_{{\rm{d}}} $

    $ {E}_{{\rm{c}}} $E
    NBNMNSZOPSPMPB
    NBPSZOZOZOZOPBPB
    NMNSNSNSNSZOPSPS
    NSNBNMNSZOPSPSPS
    ZONBNMNMNSPSPSPM
    PSNBNBNMNSZOPSPM
    PMNMNSNSNSZOPSPM
    PBPSPSZOZOZOPBPB
    下载: 导出CSV
  • [1] 张凯锋,雷鹍. 面向微细制造的微成形技术[J]. 中国机械工程,2004,15(12): 1121-1127.

    ZHANG Kaifeng, LEI Kun. Microforming technology facing to the micromanufacture[J]. China Mechanical Engineering, 2004, 15(12): 1121-1127.
    [2] 张朝阳,陈飞,王耀民,等. 纳秒脉冲激光对水下靶材的掩模微细刻蚀加工[J]. 纳米技术与精密工程,2011,9(2): 180-184. doi: 10.13494/j.npe.2011.033

    ZHANG Zhaoyang, CHEN Fei, WANG Yaomin, et al. Mask-integrated micro-etching of underwater workpiece with nanosecond pulse laser[J]. Nanotechnology and Precision Engineering, 2011, 9(2): 180-184. doi: 10.13494/j.npe.2011.033
    [3] 钱振华, 王荣扬, 何彦虎. 飞秒激光微细加工系统装备的设计与开发[J]. 制造技术与机床, 2015, (9): 62-65.

    QIAN Zhenhua, WANG Rongyang, HE Yanhu. Design and development of femtosecond laser micro-machining equipment [ J ]. Manufacturing Technology & Machine Tool, 2015, ( 9 ) : 62-65.
    [4] 李平雪,辛承聪,高健,等. 皮秒激光加工研究进展与展望[J]. 激光与红外,2018,48(10): 1195-1203. doi: 10.3969/j.issn.1001-5078.2018.10.001

    LI Pingxue, XIN Chengcong, GAO Jian, et al. Research progress and development of picosecond laser processing[J]. Laser & Infrared, 2018, 48(10): 1195-1203. doi: 10.3969/j.issn.1001-5078.2018.10.001
    [5] 郭兵, 刘文超, 赵清亮, 等. 水辅助激光微细加工技术进展[J]. 哈尔滨工业大学学报, 2020, 52(7): 11-19.

    GUO Bing, LIU Wenchao, ZHAO Qingliang, et al. Review of water assisted laser micro-machining technology [ J ]. Journal of Harbin Institute of Technology, 2020, 52 ( 7 ) : 11-19.
    [6] 邓自刚,刘宗鑫,李海涛,等. 磁悬浮列车发展现状与展望[J]. 西南交通大学学报,2022,57(3): 455-474, 530.

    DENG Zigang, LIU Zongxin, LI Haitao, et al. Development status and prospect of maglev train[J]. Journal of Southwest Jiaotong University, 2022, 57(3): 455-474, 530.
    [7] 翟婉明,赵春发. 现代轨道交通工程科技前沿与挑战[J]. 西南交通大学学报,2016,51(2): 209-226. doi: 10.3969/j.issn.0258-2724.2016.02.001

    ZHAI Wanming, ZHAO Chunfa. Frontiers and challenges of sciences and technologies in modern railway engineering[J]. Journal of Southwest Jiaotong University, 2016, 51(2): 209-226. doi: 10.3969/j.issn.0258-2724.2016.02.001
    [8] 唐任远,赵清,周挺. 稀土永磁电机正进入大发展的新时期[J]. 沈阳工业大学学报,2011,33(1): 1-8,30.

    TANG Renyuan, ZHAO Qing, ZHOU Ting. Rare earth permanent magnet electrical machines stepping a new period of rapid development[J]. Journal of Shenyang University of Technology, 2011, 33(1): 1-8,30.
    [9] 张维煜,朱熀秋,袁野. 磁悬浮轴承应用发展及关键技术综述[J]. 电工技术学报,2015,30(12): 12-20.

    ZHANG Weiyu, ZHU Huangqiu, YUAN Ye. Study on key technologies and applications of magnetic bearings[J]. Transactions of China Electrotechnical Society, 2015, 30(12): 12-20.
    [10] 张雯雯, 张新兰, 魏颖婕, 等. 应用于IC制造领域的磁悬浮定位平台综述[J]. 机床与液压, 2017, 45(7): 162-166, 113.

    ZHANG Wenwen, ZHANG Xinlan, WEI Yingjie, et al. Review of magnetic suspension positioning platform used in the IC manufacturing field [J]. Machine Tool and Hydraulics, 2017, 45 (7) : 162-166, 113.
    [11] 景敏卿,刘恒,梁金星,等. 二维高精度磁悬浮定位平台的研究[J]. 西安交通大学学报,2008,42(11): 1377-1381.

    JING Minqing, LIU Heng, LIANG Jinxing, et al. Two-dimensional high precision positioning maglev stage[J]. Journal of Xi’an Jiaotong University, 2008, 42(11): 1377-1381.
    [12] ZHOU H B, DENG H, DUAN J A. Hybrid fuzzy decoupling control for a precision maglev motion system[J]. IEEE/ASME Transactions on Mechatronics, 2018, 23(1): 389-401. doi: 10.1109/TMECH.2017.2771340
    [13] BERKELMAN P, DZADOVSKY M. Magnetic levitation over large translation and rotation ranges in all directions[J]. IEEE/ASME Transactions on Mechatronics, 2013, 18(1): 44-52. doi: 10.1109/TMECH.2011.2161614
    [14] ZHANG X D, TRAKARNCHAIYO C, ZHANG H, et al. MagTable: a tabletop system for 6-DOF large range and completely contactless operation using magnetic levitation[J]. Mechatronics, 2021, 77: 102600.1-102600.10. doi: 10.1016/j.mechatronics.2021.102600
    [15] XU FC, GUO YQ, ZHOU R, et al. Analysis of structure factors affecting suspension force of permanent magnet system with variable magnetic flux path control[J]. International Journal of Applied Electromagnetics and Mechanics, 2020, 64(1/2/3/4): 1495-1504. doi: 10.3233/JAE-209470
    [16] ZHANG L, KOU B Q, ZHANG H, et al. Characteristic analysis of a long-stroke synchronous permanent magnet planar motor[J]. IEEE Transactions on Magnetics, 2012, 48(11): 4658-4661. doi: 10.1109/TMAG.2012.2198051
    [17] NGUYEN V H, KIM W J. Two-phase lorentz coils and linear halbach array for multiaxis precision-positioning stages with magnetic levitation[J]. IEEE/ASME Transactions on Mechatronics, 2017, 22(6): 2662-2672. doi: 10.1109/TMECH.2017.2769160
    [18] KOU B Q, XING F, ZHANG L, et al. A real-time computation model of the electromagnetic force and torque for a maglev planar motor with the concentric winding[J]. Applied Sciences, 2017, 7(1): 7010098.1-7010098.14. doi: 10.3390/app7010098
    [19] HU C X, WANG Z, ZHU Y, et al. Performance-oriented precision LARC tracking motion control of a magnetically levitated planar motor with comparative experiments[J]. IEEE Transactions on Industrial Electronics, 2016, 63(9): 5763-5773. doi: 10.1109/TIE.2016.2538743
    [20] NGUYEN V H, KIM W J. Novel electromagnetic design for a precision planar positioner moving over a superimposed concentrated-field magnet matrix[J]. IEEE Transactions on Energy Conversion, 2012, 27(1): 52-62. doi: 10.1109/TEC.2011.2170173
    [21] 王丽梅,张宗雪. H型精密运动平台交叉耦合模糊PID同步控制[J]. 沈阳工业大学学报,2018,40(1): 1-5. doi: 10.7688/j.issn.1000-1646.2018.01.01

    WANG Limei, ZHANG Zongxue. Cross-coupled fuzzy PID synchronous control for H-type precision motion platform[J]. Journal of Shenyang University of Technology, 2018, 40(1): 1-5. doi: 10.7688/j.issn.1000-1646.2018.01.01
    [22] 朱国昕,雷鸣凯,赵希梅. 永磁同步电机伺服系统自适应迭代学习控制[J]. 沈阳工业大学学报,2018,40(1): 6-11. doi: 10.7688/j.issn.1000-1646.2018.01.02

    ZHU Guoxin, LEI Mingkai, ZHAO Ximei. Adaptive iterative learning control for permanent magnet synchronous motor servo system[J]. Journal of Shenyang University of Technology, 2018, 40(1): 6-11. doi: 10.7688/j.issn.1000-1646.2018.01.02
    [23] 邹圣楠, 刘畅, 邓舒同, 等. 基于混合斥力式磁浮平台的解耦及控制分析[J]. 西南交通大学学报, 2022, 57(3): 540-548.

    ZOU Shengnan, LIU Chang, DENG Shutong, et al. Decoupling and control stability analysis based on hybrid repulsion maglev platform[ J ]. Journal of Southwest Jiaotong University, 2022, 57 ( 3 ) : 540-548.
    [24] 陈启会, 李群明, 胥晓. 平面型磁悬浮平台的结构与分散控制[J]. 机械设计与研究, 2013, 29(2): 21-25.

    CHEN Qihui, LI Qunming, XU Xiao. Structure and decentralized control of planar magnetic levitation platform[J]. Mechanical Design and Research, 2013, 29(2) : 21-25.
    [25] 赵川,孙凤,裴文哲,等. 永磁悬浮平台的分散串级控制方法[J]. 西南交通大学学报,2022,57(3): 619-626. doi: 10.3969/j.issn.0258-2724.20210960

    ZHAO Chuan, SUN Feng, PEI Wenzhe, et al. Independent cascade control method for permanent magnetic levitation platform[J]. Journal of Southwest Jiaotong University, 2022, 57(3): 619-626. doi: 10.3969/j.issn.0258-2724.20210960
  • 加载中
图(13) / 表(4)
计量
  • 文章访问数:  270
  • HTML全文浏览量:  66
  • PDF下载量:  23
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-08-25
  • 修回日期:  2023-01-10
  • 网络出版日期:  2023-06-15
  • 刊出日期:  2023-02-21

目录

    /

    返回文章
    返回