• ISSN 0258-2724
  • CN 51-1277/U
  • EI Compendex
  • Scopus 收录
  • 全国中文核心期刊
  • 中国科技论文统计源期刊
  • 中国科学引文数据库来源期刊

基于机电液耦合的钢轨打磨模型

曾鲁庆 崔大宾 李立

曾鲁庆, 崔大宾, 李立. 基于机电液耦合的钢轨打磨模型[J]. 西南交通大学学报. doi: 10.3969/j.issn.0258-2724.20220577
引用本文: 曾鲁庆, 崔大宾, 李立. 基于机电液耦合的钢轨打磨模型[J]. 西南交通大学学报. doi: 10.3969/j.issn.0258-2724.20220577
ZENG Luqing, CUI Dabin, LI Li. Rail Grinding Model Based on Mechanical-Electric-Hydraulic Coupling[J]. Journal of Southwest Jiaotong University. doi: 10.3969/j.issn.0258-2724.20220577
Citation: ZENG Luqing, CUI Dabin, LI Li. Rail Grinding Model Based on Mechanical-Electric-Hydraulic Coupling[J]. Journal of Southwest Jiaotong University. doi: 10.3969/j.issn.0258-2724.20220577

基于机电液耦合的钢轨打磨模型

doi: 10.3969/j.issn.0258-2724.20220577
基金项目: 四川省科技计划(2021YJ0026)
详细信息
    作者简介:

    曾鲁庆(1981—),男,博士研究生,研究方向为钢轨打磨,E-mail:51642328@qq.com

    通讯作者:

    李立(1966—) ,女,教授,博士,研究方向为钢轨打磨、轮轨关系,E-mail:lili@swjtu.edu.cn

  • 中图分类号: U216.65

Rail Grinding Model Based on Mechanical-Electric-Hydraulic Coupling

  • 摘要:

    钢轨打磨发生在钢轨打磨车行驶过程中,会受到钢轨打磨车动力学性能的影响. 钢轨打磨一般设置为恒功率打磨,涉及到砂轮钢轨接触关系、砂轮钢轨磨削关系、液压系统、控制系统等,是一个机电液耦合过程. 在考虑机电液耦合的钢轨打磨过程中,基于车辆轨道耦合动力学,建立机电液耦合的钢轨打磨整体模型,包含车辆轨道耦合动力学子模型、砂轮钢轨接触子模型、磨削子模型、液压系统子模型;通过与已有的实验数据对比,对该钢轨打磨模型进行验证. 研究结果表明:车辆轨道动力学模型验证时,脱轨系数最大误差为11.11%,轮重减载率最大误差为7.69%,轮轴横向力最大误差为11.68%;液压控制模型验证时,在0.7Hz与1.7Hz波磨下,无杆腔压力偏差率分别为−2.96% ~ 2.92%、−0.32% ~ 1.38%,无杆腔流量偏差率为−24.11% ~ 0、−48.72% ~ 0;磨削模型验证时,整体趋势一致,最大偏差点处偏差量为0.036 mm;以上偏差均在可接受范围内,此模型能应用于实际的钢轨打磨研究中.

     

  • 图 1  钢轨打磨车

    Figure 1.  Rail grinder

    图 2  打磨车车辆-轨道空间耦合模型

    Figure 2.  Vehicle-track spatial coupling model of rail grinder

    图 3  砂轮钢轨接触图

    Figure 3.  Wheel-track contact

    图 4  等效弹簧

    Figure 4.  Equivalent spring

    图 5  液压模型

    Figure 5.  Hydraulic submodel

    图 6  基于机电液耦合钢轨打磨模型

    Figure 6.  Rail grinding model based on mechanical-electric-hydraulic coupling

    图 7  打磨作业车的动力学指标

    Figure 7.  Dynamic indicators of rail grinder

    图 8  波磨不平顺对打磨压力与流量的影响

    Figure 8.  Influence of rail irregularity on grinding pressure and flow

    图 9  磨削深度对比图

    Figure 9.  Grinding depth comparison

    表  1  曲线设置

    Table  1.   Curve parameters

    曲线工况 曲线半径/m 缓和曲线/m 外轨超高值/m 圆曲线长/m 通过速度/(km·h−1
    1 400 120 0.12 100 70
    2 500 110 0.11 100 80
    3 600 100 0.1 100 80
    4 700 100 0.1 100 100
    5 800 100 0.1 100 100
    6 1000 90 0.09 100 100
    7 1000 90 0.09 100 110
    8 1200 80 0.08 100 120
    下载: 导出CSV
  • [1] 吴磊,康彦兵,董勇,等. 考虑打磨量的重载钢轨打磨廓形优化设计[J]. 西南交通大学学报,2022,57(4): 805-812. doi: 10.3969/j.issn.0258-2724.20210120

    WU Lei, KANG Yanbing, DONG Yong, et al. Optimal design of heavy-haul rail grinding profile considering grinding amount[J]. Journal of Southwest Jiaotong University, 2022, 57(4): 805-812. doi: 10.3969/j.issn.0258-2724.20210120
    [2] 王文健,陈明韬,郭俊,等. 高速铁路钢轨打磨技术及其应用[J]. 西南交通大学学报,2007,42(5): 574-577. doi: 10.3969/j.issn.0258-2724.2007.05.011

    WANG Wenjian, CHEN Mingtao, GUO Jun, et al. Rail grinding technique and its application in high-speed railway[J]. Journal of Southwest Jiaotong University, 2007, 42(5): 574-577. doi: 10.3969/j.issn.0258-2724.2007.05.011
    [3] 李伟,周志军,温泽峰. 地铁弹性短轨枕轨道的钢轨波磨萌生原因[J]. 西南交通大学学报,2021,56(3): 619-626. doi: 10.35741/issn.0258-2724.56.3.50

    LI Wei, ZHOU Zhijun, WEN Zefeng. Initiation cause of subway rail corrugation on track with rubber-booted short sleepers[J]. Journal of Southwest Jiaotong University, 2021, 56(3): 619-626. doi: 10.35741/issn.0258-2724.56.3.50
    [4] 肖宏,陈鑫,赵越. 基于摩擦自激理论的单侧钢轨波磨机理分析[J]. 西南交通大学学报,2022,57(1): 83-89,119. doi: 10.3969/j.issn.0258-2724.20200033

    XIAO Hong, CHEN Xin, ZHAO Yue. Analysis of unilateral rail corrugation mechanism based on friction self-excited theory[J]. Journal of Southwest Jiaotong University, 2022, 57(1): 83-89,119. doi: 10.3969/j.issn.0258-2724.20200033
    [5] 从建力,王源,徐舟,等. 振噪融合的地铁钢轨波磨快速测量方法[J]. 西南交通大学学报,2023,58(3): 677-684. doi: 10.3969/j.issn.0258-2724.20220260

    CONG Jianli, WANG Yuan, XU Zhou, et al. Rail corrugation measurement method based on vibration-noise fusion in metro system[J]. Journal of Southwest Jiaotong University, 2023, 58(3): 677-684. doi: 10.3969/j.issn.0258-2724.20220260
    [6] ZENG L Q, CUI D B, FU Y D, et al. Analysis on curve negotiating ability of rail grinder in grinding state[J]. Scientific Reports, 2022, 12(1): 11668.1-11668.19.
    [7] ZENG L Q, CUI D B, LI L, et al. Improvement of the hydraulic system in a rail grinder based on the grinding effect[J]. Proceedings of the Institution of Mechanical Engineers, Part F: Journal of Rail and Rapid Transit, 2023, 237(9): 1140-1151. doi: 10.1177/09544097231156531
    [8] 翟婉明. 车辆-轨道耦合动力学-上册,Volume 1[M]. 4版. 北京:科学出版社,2015.
    [9] ZHAI W M, WANG K Y, CAI C B. Fundamentals of vehicle–track coupled dynamics[J]. Vehicle System Dynamics, 2009, 47(11): 1349-1376. doi: 10.1080/00423110802621561
    [10] HAHN R S. On the mechanics of the grinding process under plunge cut conditions[J]. Journal of Engineering for Industry, 1966, 88(1): 72-79. doi: 10.1115/1.3670895
    [11] MARINESCU I D, ROWE W B, DIMITROV B, et al. Tribosystems of abrasive machining processes[M]//Tribology of Abrasive Machining Processes. Amsterdam: Elsevier, 2013: 13-31.
    [12] 金学松,杜星,郭俊,等. 钢轨打磨技术研究进展[J]. 西南交通大学学报,2010,45(1): 1-11. doi: 10.3969/j.issn.0258-2724.2010.01.001

    JIN Xuesong, DU Xing, GUO Jun, et al. State of arts of research on rail grinding[J]. Journal of Southwest Jiaotong University, 2010, 45(1): 1-11. doi: 10.3969/j.issn.0258-2724.2010.01.001
    [13] ZHOU K, DING H H, WANG W J, et al. Influence of grinding pressure on removal behaviours of rail material[J]. Tribology International, 2019, 134: 417-426. doi: 10.1016/j.triboint.2019.02.004
    [14] ZHOU K, DING H H, ZHANG S Y, et al. Modelling and simulation of the grinding force in rail grinding that considers the swing angle of the grinding stone[J]. Tribology International, 2019, 137: 274-288. doi: 10.1016/j.triboint.2019.05.012
    [15] ZHI S D, LI J Y, ZAREMBSKI A M. Modelling of dynamic contact length in rail grinding process[J]. Frontiers of Mechanical Engineering, 2014, 9(3): 242-248. doi: 10.1007/s11465-014-0305-y
    [16] ZHI S D, ZAREMBSKI A M, LI J Y. Towards a better understanding of the rail grinding mechanism[C]// Proceedings of ASME 2013 Rail Transportation Division Fall Technical Conference. Altoona, Pennsylvania: [s. n. ], 2013: 15-17.
    [17] LIN B, ZHOU K, GUO J, et al. Influence of grinding parameters on surface temperature and burn behaviors of grinding rail[J]. Tribology International, 2018, 122: 151-162. doi: 10.1016/j.triboint.2018.02.017
    [18] GU K K, LIN Q, WANG W J, et al. Analysis on the effects of rotational speed of grinding stone on removal behavior of rail material[J]. Wear, 2015, 342/343: 52-59. doi: 10.1016/j.wear.2015.08.008
    [19] WANG W J, GU K K, ZHOU K, et al. Influence of granularity of grinding stone on grinding force and material removal in the rail grinding process[J]. Proceedings of the Institution of Mechanical Engineers, Part J: Journal of Engineering Tribology, 2019, 233(2): 355-365. doi: 10.1177/1350650118779495
    [20] 张科元,王文健,郭俊,等. 钢轨打磨过程中打磨压力波动行为分析[J]. 机械强度,2016,38(3): 447-452.

    ZHANG Keyuan, WANG Wenjian, GUO Jun, et al. Analysis of pressure fluctuation behavior during the rail grinding process[J]. Journal of Mechanical Strength, 2016, 38(3): 447-452.
    [21] 王璐颖,罗世辉,马卫华,等. 一系定位刚度对钢轨打磨车动力学性能的影响[J]. 重庆理工大学学报(自然科学),2012,26(8): 12-16.

    WANG Luying, LUO Shihui, MA Weihua, et al. Effect of primary positioning stiffness on dynamics performance of rail grinding train[J]. Journal of Chongqing University of Technology (Natural Science), 2012, 26(8): 12-16.
    [22] FAN W G, HOU G Y, WANG W X, et al. Dynamic analysis of a novel rail-grinding car using open-structured abrasive belt for high-speed railways[J]. Mathematical Problems in Engineering, 2019, 2019: 1748679.1-1748679.9.
    [23] DU X, JIN X S, ZHAO G T, et al. Rail corrugation of high-speed railway induced by rail grinding[J]. Shock and Vibration, 2021, 2021: 5546809.1-5546809.14.
    [24] 付青云,吴磊,陈帅,等. 钢轨打磨对焊接接头区的不平顺及其动力学响应的影响[J]. 润滑与密封,2016,41(3): 66-70,80. doi: 10.3969/j.issn.0254-0150.2016.03.013

    FU Qingyun, WU Lei, CHEN Shuai, et al. The effect of rail grinding on weld irregularity and dynamic response[J]. Lubrication Engineering, 2016, 41(3): 66-70,80. doi: 10.3969/j.issn.0254-0150.2016.03.013
    [25] 汤万文,胡军科,周创辉. 钢轨打磨车恒压加载系统压力波动分析[J]. 铁道科学与工程学报,2013,10(3): 116-120. doi: 10.3969/j.issn.1672-7029.2013.03.024

    TANG Wanwen, HU Junke, ZHOU Chuanghui. Pressure fluctuation analysis on the constant pressure loading system of rail grinding train[J]. Journal of Railway Science and Engineering, 2013, 10(3): 116-120. doi: 10.3969/j.issn.1672-7029.2013.03.024
    [26] 聂蒙,李建勇,沈海阔. 基于容腔调节的钢轨打磨压力控制系统[J]. 西南交通大学学报,2015,50(5): 796-802.

    NIE Meng, LI Jianyong, SHEN Haikuo. Pressure control system for rail grinding based on chamber adjustment[J]. Journal of Southwest Jiaotong University, 2015, 50(5): 796-802.
    [27] 戴云飞. 液压缸液压刚度的计算[J]. 有色金属设计,1999,26(1): 62-64.

    DAI Yunfei. Calculation of hydraulic stiffness of hydraulic cylinder[J]. Nonferrous Metals Design, 1999, 26(1): 62-64.
    [28] 张云波. 多体动力学接触与碰撞建模研究[D]. 武汉:华中科技大学,2007.
    [29] SONG P, KRAUS P, KUMAR V, et al. Analysis of rigid-body dynamic models for simulation of systems with frictional contacts[J]. Journal of Applied Mechanics, 2001, 68(1): 118-128. doi: 10.1115/1.1331060
    [30] JOHNSON K L. Contact mechanics[M]. Cambridge [Cambridgeshire]: Cambridge University Press, 1985.
    [31] 金学松,刘启跃. 轮轨摩擦学[M]. 北京:中国铁道出版社,2004.
    [32] 波波夫. 接触力学与摩擦学的原理及其应用[M]. 2版. 北京:清华大学出版社,2019.
    [33] 宋锦春,王长周,蔡衍. 液压系统建模与仿真分析[M]. 沈阳:东北大学出版社,2021.
    [34] 杜成义. 某型钢轨打磨列车动力学特性研究[D]. 成都:西南交通大学,2018.
    [35] 方立志. 钢轨打磨车打磨装置恒力加载系统的研究[D]. 长沙:中南大学,2012.
    [36] 智少丹. 钢轨打磨车磨削过程建模研究[D]. 北京:北京交通大学,2015.
  • 加载中
图(9) / 表(1)
计量
  • 文章访问数:  77
  • HTML全文浏览量:  30
  • PDF下载量:  25
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-08-16
  • 网络出版日期:  2024-07-25

目录

    /

    返回文章
    返回