• ISSN 0258-2724
  • CN 51-1277/U
  • EI Compendex
  • Scopus 收录
  • 全国中文核心期刊
  • 中国科技论文统计源期刊
  • 中国科学引文数据库来源期刊

输电塔斜材不同节点型式下的受压承载力

鄢秀庆 何松洋 李正良 韩大刚 高见 刘红军

鄢秀庆, 何松洋, 李正良, 韩大刚, 高见, 刘红军. 输电塔斜材不同节点型式下的受压承载力[J]. 西南交通大学学报, 2024, 59(3): 712-719. doi: 10.3969/j.issn.0258-2724.20220573
引用本文: 鄢秀庆, 何松洋, 李正良, 韩大刚, 高见, 刘红军. 输电塔斜材不同节点型式下的受压承载力[J]. 西南交通大学学报, 2024, 59(3): 712-719. doi: 10.3969/j.issn.0258-2724.20220573
YAN Xiuqing, HE Songyang, LI Zhengliang, HAN Dagang, GAO Jian, LIU Hongjun. Compression Bearing Capacity of Inclined Members of Transmission Tower with Different Joint Types[J]. Journal of Southwest Jiaotong University, 2024, 59(3): 712-719. doi: 10.3969/j.issn.0258-2724.20220573
Citation: YAN Xiuqing, HE Songyang, LI Zhengliang, HAN Dagang, GAO Jian, LIU Hongjun. Compression Bearing Capacity of Inclined Members of Transmission Tower with Different Joint Types[J]. Journal of Southwest Jiaotong University, 2024, 59(3): 712-719. doi: 10.3969/j.issn.0258-2724.20220573

输电塔斜材不同节点型式下的受压承载力

doi: 10.3969/j.issn.0258-2724.20220573
基金项目: 国家自然科学基金(51508054)
详细信息
    作者简介:

    鄢秀庆(1984—) ,男,高级工程师,研究方向为送电结构设计,E-mail:64732264@qq.com

  • 中图分类号: TM753;TM721.1

Compression Bearing Capacity of Inclined Members of Transmission Tower with Different Joint Types

  • 摘要:

    为研究节点约束下输电塔斜材受压承载力的计算方法,通过对120根等边角钢的偏心受压承载力试验,分析其最小轴、平行轴布置时的破坏模式、承载力及变形形态,研究不同约束刚度、节点型式对其承载力的影响;结合现行行标公式,针对不同节点连接型式(A、B、C类),提出输电塔斜材受压长细比的计算公式. 研究结果表明:长细比小于120时,构件承载力主要受偏心控制,偏心越大,承载力越低;而长细比大于120时,构件承载力主要受约束刚度控制,约束刚度越大,承载力越高;A、C类连接在不同长细比时各具优势,但B类连接的承载力始终低于A、C类连接;国内外规范计算值与试验值均存在较大的偏差,具有一定的局限性,体现在小长细比构件偏心及大长细比构件约束修正不足等方面;所提出长细比修正公式的计算结果与试验结果吻合良好,可用于指导工程设计.

     

  • 图 1  带弹簧的半刚性支座

    Figure 1.  Semi-rigid support with spring

    图 2  端部约束示意

    Figure 2.  End restraint

    图 3  加载装置示意

    Figure 3.  Test setup

    图 4  测点布置

    Figure 4.  Layout of monitoring points

    图 5  跨中截面荷载-侧向位移曲线

    Figure 5.  Load–lateral displacement curves of mid-span section

    图 6  ∟BK2-100、∟BK3-100荷载-响应曲线

    Figure 6.  Load–response curves of∟BK2-100 and ∟BK3-100

    图 7  试件失效模式

    Figure 7.  Failure modes of specimens

    图 8  A类连接不同约束刚度时的承载力曲线

    Figure 8.  Bearing capacity curves of A joint type with different joint stiffnesses

    图 9  不同约束刚度时的承载力曲线

    Figure 9.  Bearing capacity curves under different joint stiffnesses

    图 10  最小轴布置时的承载力对比曲线

    Figure 10.  Comparison curves of bearing capacity of arranged minimum axis

    图 11  平行轴布置不同连接时承载力对比曲线

    Figure 11.  Comparison curves of bearing capacity of arranged parallel axis with different joint types

    图 12  最小轴布置试验值与修正值承载力对比

    Figure 12.  Comparison of test and corrected bearing capacity of arranged minimum axis

    图 13  最小轴布置稳定系数对比曲线

    Figure 13.  Comparison curves of stability coefficient of arranged minimum axis

    图 14  修正后承载力与试验值对比

    Figure 14.  Comparison of test and corrected bearing capacity

    图 15  修正前、后稳定系数对比

    Figure 15.  Comparison of stability coefficient before and after correction

    表  1  试验构件信息

    Table  1.   Information of experimental members

    试验构件
    编号
    布置
    型式
    角钢尺
    寸/mm
    斜材长细比
    ∟AK2-λ最小轴∟80×760、80、100、130、160
    ∟AK1-λ平行轴∟80×780、100、120、150、180
    ∟AK2-λ平行轴∟80×780、100、120、150、180
    ∟AK3-λ平行轴∟80×780、100、120、150、180
    ∟BK2-λ平行轴∟80×780、100、120、150、180
    ∟BK3-λ平行轴∟80×780、100、120、150、180
    ∟CK2-λ平行轴∟80×780、100、120、150、180
    ∟CK3-λ平行轴∟80×780、100、120、150、180
    注:试验件编号∟AK2-λ中,A为节点形式,K2为约束刚度,λ为试验构件长细比值,其余编号类似,K1、K2、K3分别代表刚度为0、50、100 kN·m/rad.
    下载: 导出CSV
  • [1] 李正良,李妍,刘红军,等. 偏心受压单角钢构件力学性能试验研究[J]. 建筑结构学报,2018,39(5): 146-155.

    LI Zhengliang, LI Yan, LIU Hongjun, et al. Experimental study on mechanical behavior of single angle under eccentric compression[J]. Journal of Building Structures, 2018, 39(5): 146-155.
    [2] 李正良,曹哲贤,施菁华,等. 输电塔不等边角钢交叉斜材稳定承载力研究[J]. 建筑钢结构进展,2020,22(2): 111-120.

    LI Zhengliang, CAO Zhexian, SHI Jinghua, et al. Investigation on the stability bearing capacity of unequal angle steel cross bracing in transmission towers[J]. Progress in Steel Building Structures, 2020, 22(2): 111-120.
    [3] 陈绍蕃. 单边连接单角钢压杆的计算与构造[J]. 建筑科学与工程学报,2008,25(2): 72-78.

    CHEN Shaofan. Calculation and construction of single-angle steel struts connected by one leg[J]. Journal of Architecture and Civil Engineering, 2008, 25(2): 72-78.
    [4] HAIDAR R, MADUGULA M K S, MARSHALL D G. Compressive strength of steel angles connected by one leg[C]//Proceedings of Structures Congress XV. Reston: American Society of Civil Engineers, 1997: 880-883.
    [5] POPOVIC D, HANCOCK G J, RASMUSSEN K J R. Compression tests on cold-formed angles loaded parallel with a leg[J]. Journal of Structural Engineering, 2001, 127(6): 600-607. doi: 10.1061/(ASCE)0733-9445(2001)127:6(600)
    [6] SAKLA S S. Performance of the AISC LRFD specification in predicting the capacity of eccentrically loaded single-angle struts[J]. Engineering Journal, 2005, 42(4): 239-246.
    [7] 郝际平,曹现雷,张天光,等. 单边连接高强单角钢压杆试验研究和仿真分析[J]. 西安建筑科技大学学报(自然科学版),2009,41(6): 741-747.

    HAO Jiping, CAO Xianlei, ZHANG Tianguang, et al. Experimentation study and simulation analysis on high strength single-angle compression members attached by one leg[J]. Journal of Xi’an University of Architecture & Technology (Natural Science Edition), 2009, 41(6): 741-747.
    [8] 顾伟华,张大长,曹世山. 输电铁塔单角钢轴压承载力计算公式及试验研究[J]. 建筑钢结构进展,2020,22(1): 78-84.

    GU Weihua, ZHANG Dachang, CAO Shishan. Analytical and experimental investigation on axial compression capacity of single angle steel for transmission line tower[J]. Progress in Steel Building Structures, 2020, 22(1): 78-84.
    [9] 康强文,童根树. 单肢连接的单角钢压杆承载力分析[J]. 钢结构,2006,21(2): 7-11.

    KANG Qiangwen, TONG Genshu. Load-carrying capacity of single angle struts connected with one leg[J]. Steel Construction, 2006, 21(2): 7-11.
    [10] EARLS C J, GALAMBOS T V. Practical compactness and bracing provisions for the design of single angle beams[J]. Engineering Journal, 1998, 35(1): 19-25.
    [11] 沈祖炎. 单角钢单面连接时的承载力计算[J]. 钢结构,1991,6(1): 18-24.
    [12] 沈祖炎,胡学仁. 单角钢压杆的稳定计算[J]. 同济大学学报,1982,10(3): 56-71.

    SHEN Zuyan, HU Xueren. Ultimate strength of single angle columns[J]. Journal of Tongji University, 1982, 10(3): 56-71.
    [13] 陈绍蕃. 单角钢轴压杆件弹性和非弹性稳定承载力[J]. 建筑结构学报,2012,33(10): 134-141.

    CHEN Shaofan. Elastic and inelastic stability capacity of single angle under axial compression[J]. Journal of Building Structures, 2012, 33(10): 134-141.
    [14] 陈绍蕃. 塔架压杆的稳定承载力[J]. 西安建筑科技大学学报(自然科学版),2010,42(3): 305-314.

    CHEN Shaofan. Buckling resistance of compression members in tower structures[J]. Journal of Xi’an University of Architecture & Technology (Natural Science Edition), 2010, 42(3): 305-314.
    [15] CHEN Y, GUO Y, XU H W. Effective length factor of a non-symmetrical cross-bracing system with a discontinuous diagonal[J]. Journal of Zhejiang University—Science A, 2019, 20(8): 590-600. doi: 10.1631/jzus.A1900169
    [16] 中华人民共和国住房和城乡建设部. 钢结构设计标准: GB 50017—2017[S]. 北京: 中国建筑工业出版社, 2018.
    [17] American Society of Civil Engineers. Design of latticed steel transmission structures: ASCE/SEI 10-15[S]. Virgini: ASCE, 2015.
    [18] European Committee for Electrotechnical Standardization. Overhead electrical lines exceeding AC 45 kV—part 1: general requirements—common specifications: EN 50341-1[S]. Brussels: CENELEC, 2001.
    [19] 国家能源局. 架空输电线路杆塔结构设计技术规程: DL/T 5486—2020[J]. 北京: 中国计划出版社, 2020.
    [20] 刘红军,王文武,李正良,等. 输电塔主材扭转约束对交叉斜材面外承载力的影响[J]. 特种结构,2021,38(2): 58-63.

    LIU Hongjun, WANG Wenwu, LI Zhengliang, et al. Influence of torsional constraint of transmission tower main material on out-of-plane bearing capacity of cross-bracing[J]. Special Structures, 2021, 38(2): 58-63.
  • 加载中
图(15) / 表(1)
计量
  • 文章访问数:  172
  • HTML全文浏览量:  90
  • PDF下载量:  26
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-08-23
  • 修回日期:  2023-01-28
  • 网络出版日期:  2024-01-08
  • 刊出日期:  2023-03-17

目录

    /

    返回文章
    返回