• ISSN 0258-2724
  • CN 51-1277/U
  • EI Compendex
  • Scopus 收录
  • 全国中文核心期刊
  • 中国科技论文统计源期刊
  • 中国科学引文数据库来源期刊

脉冲风洞天平基础动力特征的简化计算方法

李向东 聂连飞 朱宝龙 林其 于时恩

李向东, 聂连飞, 朱宝龙, 林其, 于时恩. 脉冲风洞天平基础动力特征的简化计算方法[J]. 西南交通大学学报, 2024, 59(2): 413-422. doi: 10.3969/j.issn.0258-2724.20220563
引用本文: 李向东, 聂连飞, 朱宝龙, 林其, 于时恩. 脉冲风洞天平基础动力特征的简化计算方法[J]. 西南交通大学学报, 2024, 59(2): 413-422. doi: 10.3969/j.issn.0258-2724.20220563
LI Xiangdong, NIE Lianfei, ZHU Baolong, LIN Qi, YU Shien. Simplified Calculation Method for Dynamic Characteristics of Pulse Wind Tunnel Balance Foundation[J]. Journal of Southwest Jiaotong University, 2024, 59(2): 413-422. doi: 10.3969/j.issn.0258-2724.20220563
Citation: LI Xiangdong, NIE Lianfei, ZHU Baolong, LIN Qi, YU Shien. Simplified Calculation Method for Dynamic Characteristics of Pulse Wind Tunnel Balance Foundation[J]. Journal of Southwest Jiaotong University, 2024, 59(2): 413-422. doi: 10.3969/j.issn.0258-2724.20220563

脉冲风洞天平基础动力特征的简化计算方法

doi: 10.3969/j.issn.0258-2724.20220563
基金项目: 国家自然科学基金(41672342)
详细信息
    作者简介:

    李向东(1975—),男,研究员,研究方向为吸气式高超声速推进技术,E-mail:rangers777@sohu.com

    通讯作者:

    朱宝龙(1976—),男,教授,博士,研究方向为岩土与地下工程,E-mail:zhubaolong@swust.edu.cn

  • 中图分类号: TU476.1

Simplified Calculation Method for Dynamic Characteristics of Pulse Wind Tunnel Balance Foundation

  • 摘要:

    为了研究脉冲风洞天平基础在脉冲气动荷载作用下的动力响应特征,以某脉冲风洞为例,选择某典型气动荷载作用形式,建立了脉冲风洞天平基础在气动荷载作用下竖直方向、水平方向位移以及回转角度等动力特征的简化计算方法,并采用数值模拟的方法验证其可靠性. 研究结果表明:天平基础在典型气动荷载作用下,竖直向最大振幅0.00175 mm,频率7.94 Hz,水平向最大振幅0.00283 mm,频率7.94 Hz,回转角度最大振幅0.00034°,频率7.94 Hz,典型气动荷载对天平基础振动影响较小,也未产生共振现象;基础振动最大振幅随气动荷载增大而增大,基础振动频率随气动荷载频率增大而增大;在气动荷载不变的条件下,基础振动的最大振幅与频率随尺寸的变大而变小,基础振动的最大振幅也随地基土性质的增强而减小,但地基土性质的变化对基础振动频率无影响.

     

  • 图 1  基础简图(单位:m)

    Figure 1.  Sketch of foundation (unit: m)

    图 2  基础水平向振动的计算简图

    Figure 2.  Horizontal vibration of foundation

    图 3  块体基础竖直方向振动简图

    Figure 3.  Vertical vibration of blocky foundation

    图 4  三维数值网格划分图

    Figure 4.  3D numerical meshing

    图 5  天平基础振动时程曲线理论值与数值模拟值

    Figure 5.  Theoretically calculated and numerically simulated values of time history curves of balance foundation vibration

    图 6  天平基础水平位移时程曲线

    Figure 6.  Time history curves of horizontal displacement of balance foundation under different loads

    图 7  荷载频率不同时,天平基础位移时程曲线

    Figure 7.  Time history curves of balance foundation displacement under different load frequencies

    图 8  基础尺寸变化时,基础位移时程曲线

    Figure 8.  Time history curves of foundation displacement under varying sizes

    图 9  地基土剪切模量不同时基础位移时程曲线

    Figure 9.  Time history curves of foundation displacement under different shear modulus of foundation soil

    图 10  气动荷载实测曲线

    Figure 10.  Measured curves of aerodynamic load

    图 11  荷载转换

    Figure 11.  Load conversion

    表  1  网格无关性检验方案及计算结果

    Table  1.   Test scheme and calculation results of mesh independence

    方案 节点
    数/个
    单元
    数/个
    竖直向最大振幅/μm 水平向最大振幅/μm 回转角度最大振幅/(°)
    1 12749 17392 1.71 2.78 3.1×10−4
    2 18308 24878 1.75 2.83 3.4×10−4
    3 32637 44583 1.77 2.86 3.6×10−4
    4 59842 78949 1.78 2.87 3.6×10−4
    下载: 导出CSV

    表  2  材料计算参数

    Table  2.   Parameters of materials

    名称 重度/
    (kN·m−3)
    弹性模量/GPa 泊松比 剪胀角/(°) 偏心率 fb0/fc0 K 黏性系数
    支撑 78 210 0.2
    地基 19 30 0.25 38 0.1 1.16 0.67 0.005
    基础 25 30 0.25 38 0.1 1.16 0.67 0.005
    下载: 导出CSV

    表  3  理论计算结果与数值模拟结果对比

    Table  3.   Comparison of theoretically calculated results and numerically simulated results

    方法 频率/Hz 最大振幅/μm
    竖直向 水平向 回转角 竖直向 水平向 回转角
    理论计算 8.06 1.75 7.94 0.00283 7.94 3.4×10−4
    数值模拟 7.81 2.19 7.75 0.00331 7.94 4.1×10−4
    下载: 导出CSV

    表  4  不同基础尺寸计算结果

    Table  4.   Calculation results of foundation with different sizes

    基础尺寸 最大振幅/μm 频率/Hz
    竖直振动 水平振动 竖直振动 水平振动
    0.64S 2.24 6.45 9.52442 7.48
    0.80S 0.787 5.35 8.03606 6.21
    S 0.331 4.49 7.03641 5.22
    1.25S 0.155 4.02 5.89714 4.66
    1.56S 0.075 3.59 4.66436 4.17
    下载: 导出CSV
  • [1] 乐嘉陵. 吸气式高超声速技术研究进展[J]. 推进技术,2010,31(6): 641-649.

    LE Jialing. Progress in air-breathing hypersonic technology[J]. Journal of Propulsion Technology, 2010, 31(6): 641-649.
    [2] GAZETAS G. Analysis of machine foundation vibrations: state of the art[J]. International Journal of Soil Dynamics and Earthquake Engineering, 1983, 2(1): 2-42. doi: 10.1016/0261-7277(83)90025-6
    [3] MIZUNO H. Effects of structurefh soil-structure interaction during various excitations[C]//Proc., 7th World Conference on Earthquake Engineering. Istanbul: [s.n.], 1980: 149-156.
    [4] NII Y. Experimental half-space dynamic stiffness[J]. Journal of Geotechnical Engineering, 1987, 113(11): 1359-1373. doi: 10.1061/(ASCE)0733-9410(1987)113:11(1359)
    [5] SARRAZIN M A, ROESSET J M, WHITMAN R V. Dynamic soil-structure interaction[J]. Journal of the Structural Division, 1972, 98(7): 1525-1544. doi: 10.1061/JSDEAG.0003278
    [6] VELETSOS A S, TANG Y. Vertical vibration of ring foundations[J]. Earthquake Engineering & Structural Dynamics, 1987, 15(1): 1-21.
    [7] MITA A, LUCO J E. Impedance functions and input motions for embedded square foundations[J]. Journal of Geotechnical Engineering, 1989, 115(4): 491-503. doi: 10.1061/(ASCE)0733-9410(1989)115:4(491)
    [8] AVILÉS J, PÉREZ-ROCHA L E. A simplified procedure for torsional impedance functions of embedded foundations in a soil layer[J]. Computers and Geotechnics, 1996, 19(2): 97-115. doi: 10.1016/0266-352X(95)00038-C
    [9] MAUGERI M, MUSUMECI G, NOVITÀ D, et al. Shaking table test of failure of a shallow foundation subjected to an eccentric load[J]. Soil Dynamics and Earthquake Engineering, 2000, 20(5/6/7/8): 435-444.
    [10] GAJAN S, KUTTER B L, PHALEN J D, et al. Centrifuge modeling of load-deformation behavior of rocking shallow foundations[J]. Soil Dynamics and Earthquake Engineering, 2005, 25(7/8/9/10): 773-783.
    [11] BHATTACHARYA S, ADHIKARI S. Experimental validation of soil-structure interaction of offshore wind turbines[J]. Soil Dynamics and Earthquake Engineering, 2011, 31(5/6): 805-816.
    [12] 钱鸿缙. 动力机器基础设计[M]. 北京: 中国建筑工业出版社, 1980: 23-66.
    [13] 严人觉. 动力基础半空间理论概论[M]. 北京: 中国建筑工业出版社, 1981.
    [14] GAZETAS G. Formulas and charts for impedances of surface and embedded foundations[J]. Journal of Geotechnical Engineering, 1991, 117(9): 1363-1381. doi: 10.1061/(ASCE)0733-9410(1991)117:9(1363)
    [15] ÇELEBI E, FıRAT S, ÇANKAYA İ. The effectiveness of wave barriers on the dynamic stiffness coefficients of foundations using boundary element method[J]. Applied Mathematics and Computation, 2006, 180(2): 683-699. doi: 10.1016/j.amc.2006.01.008
    [16] CELEBI E, FIRAT S, CANKAYA L. Dynamic impedance functions for rectangular rigid foundations[J]. Teknik Dergi/Technical Journal of Turkish Chamber of Civil Engineers, 2006, 17(2): 3827-3849.
    [17] 蒋东旗,谢定义. 动力机器基础设计的数值方法研究[J]. 土木工程学报,2002,35(1): 74-78.

    JIANG Dongqi, XIE Dingyi. Numerical simulation method for foundation design of dynamic machine[J]. China Civil Engineering Journal, 2002, 35(1): 74-78.
    [18] 王幼青,张克绪,朱腾明. 动力机器基础与地基体系分析[J]. 哈尔滨建筑大学学报,1999(3): 43-47.

    WANG Youqing, ZHANG Kexu, ZHU Tengming. Dynamic machine soil-foundation system analysis[J]. Journal of Harbin University of Civil Engineering and Architecture, 1999(3): 43-47.
    [19] 刘志久,尚守平,徐建. 埋置基础扭转振动的实用化计算与试验的对比[J]. 岩土力学,2011,32(12): 3618-3622.

    LIU Zhijiu, SHANG Shouping, XU Jian. Comparison of practical calculation for torsional vibration of embedded foundations and experiments[J]. Rock and Soil Mechanics, 2011, 32(12): 3618-3622.
    [20] 燕彬,黄义,王成林. 任意刚性基础竖向动阻抗的简化计算[J]. 世界地震工程,2005,21(1): 91-96.

    YAN Bin, HUANG Yi, WANG Chenglin. Simplified method for dynamic vertical impedances of rigid foundations with arbitrary shapes[J]. World Information on Earthquake Engineering, 2005, 21(1): 91-96.
    [21] 中华人民共和国住房和城乡建设部. 动力机器基础设计标准: GB 50040—2020[S]. 北京: 中国计划出版社, 2020.
    [22] CHEN S S, SHI J Y. A response-based simplified model for vertical vibrations of embedded foundations[J]. Soil Dynamics and Earthquake Engineering, 2011, 31(5/6): 773-784.
    [23] 刘庆宽,何书勇,贾娅娅,等. 防雪栅与路基间距对路基积雪分布影响规律的数值模拟研究[J]. 振动与冲击,2021,40(6): 227-234,264.

    LIU Qingkuan, HE Shuyong, JIA Yaya, et al. Numerical simulation on the influence of the distance between snow fence and subgrade on the snow distribution on subgrade[J]. Journal of Vibration and Shock, 2021, 40(6): 227-234,264.
    [24] 王毅刚,朱朗贤,王玉鹏,等. 高速列车转向架区域气动噪声源的特征识别[J]. 西南交通大学学报,2023,58(2): 261-271,286.

    WANG Yigang, ZHU Langxian, WANG Yupeng, et al. Characteristic identification of aerodynamic noise sources in high-speed train bogie area[J]. Journal of Southwest Jiaotong University, 2023, 58(2): 261-271,286.
    [25] 于梦阁,李美香,刘加利,等. 考虑风速纵、横分量的列车气动载荷变化特性[J]. 西南交通大学学报,2024,59(1): 29-35.

    YU Mengge, LI Meixiang, LIU Jiali, et al. Study on unsteady aerodynamic loads of high-speed trains exposed to stochastic wind for ant wind angle[J]. Journal of Southwest Jiaotong University, 2024, 59(1): 29-35.
    [26] 第一机械工业部设计研究总院. 动力机器基础设计手册[M]. 北京: 中国建筑工业出版社, 1983.
    [27] 中华人民共和国住房和城乡建设部. 建筑结构荷载规范: GB 50009—2012[S]. 北京: 中国建筑工业出版社, 2012.
    [28] 柯世堂,葛耀君,赵林,等. 大型冷却塔结构的等效静力风荷载[J]. 同济大学学报(自然科学版),2011,39(8): 1132-1137.

    KE Shitang, GE Yaojun, ZHAO Lin, et al. Equivalent static wind load of large cooling tower[J]. Journal of Tongji University (Natural Science), 2011, 39(8): 1132-1137.
  • 加载中
图(11) / 表(4)
计量
  • 文章访问数:  206
  • HTML全文浏览量:  57
  • PDF下载量:  18
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-08-23
  • 修回日期:  2023-02-20
  • 网络出版日期:  2023-12-26
  • 刊出日期:  2023-11-01

目录

    /

    返回文章
    返回