• ISSN 0258-2724
  • CN 51-1277/U
  • EI Compendex
  • Scopus 收录
  • 全国中文核心期刊
  • 中国科技论文统计源期刊
  • 中国科学引文数据库来源期刊

有砟轨道捣固作业起道方案的综合修正方法

张雨潇 时瑾 倪国华 王英杰

张雨潇, 时瑾, 倪国华, 王英杰. 有砟轨道捣固作业起道方案的综合修正方法[J]. 西南交通大学学报, 2023, 58(6): 1347-1356. doi: 10.3969/j.issn.0258-2724.20220526
引用本文: 张雨潇, 时瑾, 倪国华, 王英杰. 有砟轨道捣固作业起道方案的综合修正方法[J]. 西南交通大学学报, 2023, 58(6): 1347-1356. doi: 10.3969/j.issn.0258-2724.20220526
ZHANG Yuxiao, SHI Jin, NI Guohua, WANG Yingjie. Comprehensive Correction Method of Lifting Scheme for Tamping Operation of Ballasted Track[J]. Journal of Southwest Jiaotong University, 2023, 58(6): 1347-1356. doi: 10.3969/j.issn.0258-2724.20220526
Citation: ZHANG Yuxiao, SHI Jin, NI Guohua, WANG Yingjie. Comprehensive Correction Method of Lifting Scheme for Tamping Operation of Ballasted Track[J]. Journal of Southwest Jiaotong University, 2023, 58(6): 1347-1356. doi: 10.3969/j.issn.0258-2724.20220526

有砟轨道捣固作业起道方案的综合修正方法

doi: 10.3969/j.issn.0258-2724.20220526
基金项目: 国家自然科学基金(52078035, 52178406)
详细信息
    作者简介:

    张雨潇(1996—),男,博士研究生,研究方向为轨道平顺性控制,E-mail:21115059@bjtu.edu.cn

    通讯作者:

    时瑾(1980—),男,教授,研究方向为铁路线路工程技术,E-mail:jshi@bjtu.edu.cn

  • 中图分类号: U216.42

Comprehensive Correction Method of Lifting Scheme for Tamping Operation of Ballasted Track

  • 摘要:

    为保证捣固作业效果达到预期目标,需严格控制影响作业质量的不利因素,首先,以有砟轨道捣固作业数据为研究对象,分析影响作业质量的关键因素,探讨传统方法修正起道方案的基本原理;其次,将多因素约束条件纳入目标线形构造过程,并遵从历史作业规律,对起道量进行修正,构造一种用于提升轨道高低调整效果的起道方案综合修正方法;最后,以某高速铁路有砟轨道捣固作业为工程背景,验证综合修正方法的实施效果. 研究结果表明:在起道方案制定过程中施加针对性控制措施,有利于提高捣固作业对轨道不平顺的调整能力;捣固后,线形实测值与目标值之间决定系数高达0.92;方案起道量与实际起道量之间均方误差为1.8 mm;高低60 m中点弦测值降至4.0 mm,高低轨道质量指数降至0.28 mm.

     

  • 图 1  纵向抄平作业原理

    Figure 1.  Principle of longitudinal leveling operation

    图 2  方案起道量与实际起道量

    Figure 2.  Planned and actual lifting values

    图 3  高低不平顺理想值与实际值

    Figure 3.  Ideal and actual values of track irregularity

    图 4  不同目标线形的捣固作业

    Figure 4.  Tamping operations with different target lines

    图 5  起、拨道方案

    Figure 5.  Schemes of lifting and lining

    图 6  捣固车重复性作业精度

    Figure 6.  Repetitive operation accuracy of tamping wagon

    图 7  不同捣固车作业精度

    Figure 7.  Operation accuracy of different tamping wagons

    图 8  起道量分布趋势

    Figure 8.  Distribution trend of lifting value

    图 9  目标线形修正示意

    Figure 9.  Target line correction

    图 10  目标线形构造及修正结果

    Figure 10.  Construction and correction of target line

    图 11  适应度曲线

    Figure 11.  Fit curve

    图 12  测试集数据预测效果

    Figure 12.  Prediction effect of test set data

    图 13  方案起道量修正结果

    Figure 13.  Correction results of planned lifting value

    图 14  捣固作业整体效果

    Figure 14.  Overall effect of tamping operation

    图 15  行车安全性和舒适性指标

    Figure 15.  Running safety and comfortability index

    图 16  轨道平顺性状态

    Figure 16.  Track regularity state

    表  1  高低不平顺改善效果

    Table  1.   Improvement effect of track irregularity

    线路60 m 中点弦
    测值/mm
    改善率/%方案起道
    量均值/
    mm
    捣固前捣固后高低不
    平顺
    TQI
    线路 1
    8.00 6.50 18.75 20.38 6.50
    线路 2
    18.00 12.30 31.67 37.50 14.36
    下载: 导出CSV

    表  2  建模典型数据

    Table  2.   Typical data for modeling

    实际起道
    量/mm
    高低 60 m 中点
    弦测值/mm
    捣固车
    编号
    方案起道
    量/mm
    10.00 5.00 1 16.00
    8.00 4.25 3 14.00
    10.00 5.50 2 16.00
    9.00 4.75 3 15.00
    $\vdots $ $\vdots $ $\vdots $ $\vdots $
    9.00 5.50 1 16.00
    下载: 导出CSV
  • [1] 木东升,周宇,韩延彬,等. 轨道综合作业对高速铁路有砟轨道几何不平顺改善效果[J]. 交通运输工程学报,2018,18(5): 90-99.

    MU Dongsheng, ZHOU Yu, HAN Yanbin, et al. Effect of track comprehensive maintenance on geometry irregularity improvement of ballast track in high-speed railway[J]. Journal of Traffic and Transportation Engineering, 2018, 18(5): 90-99.
    [2] 王英杰,楚杭,时瑾,等. 有砟高铁大机捣固质量相关性及敏感波长研究[J]. 铁道工程学报,2021,38(1): 37-41,108.

    WANG Yingjie, CHU Hang, SHI Jin, et al. Research on the machine tamping quality correlation and sensitive wavelengths of high speed railway ballasted track[J]. Journal of Railway Engineering Society, 2021, 38(1): 37-41,108.
    [3] AINGARAN S, LE PEN L, ZERVOS A, et al. Modelling the effects of trafficking and tamping on scaled railway ballast in triaxial tests[J]. Transportation Geotechnics, 2018, 15: 84-90. doi: 10.1016/j.trgeo.2018.04.004
    [4] KUMARA J J, HAYANO K. Deformation characteristics of fresh and fouled ballasts subjected to tamping maintenance[J]. Soils and Foundations, 2016, 56(4): 652-663. doi: 10.1016/j.sandf.2016.07.006
    [5] 王众保,许永贤,王红,等. 大型养路机械捣固作业参数对捣固效果影响规律的研究[J]. 铁道建筑,2020,60(1): 129-133.

    WANG Zhongbao, XU Yongxian, WANG Hong, et al. Study on influence laws of working parameters of heavy-duty maintenance machinery tamping on tamping effect[J]. Railway Engineering, 2020, 60(1): 129-133.
    [6] 时瑾,张雨潇,楼梁伟,等. 新建高速铁路有砟轨道精捣作业环节改进及效果[J]. 中国铁道科学,2021,42(6): 8-17.

    SHI Jin, ZHANG Yuxiao, LOU Liangwei, et al. Optimization and effect of accurate tamping operation link for ballasted track in newly-built high-speed railway[J]. China Railway Science, 2021, 42(6): 8-17.
    [7] 时瑾,张雨潇,陈云峰,等. 基于长波平顺性的提速线路精捣方案优化算法及应用[J]. 铁道学报,2022,44(2): 72-80.

    SHI Jin, ZHANG Yuxiao, CHEN Yunfeng, et al. Optimization algorithm and application of precise tamping for speed raising railway based on long-wave regularity[J]. Journal of the China Railway Society, 2022, 44(2): 72-80.
    [8] 时瑾,张雨潇,陈云峰,等. 有砟高铁捣固作业轨向平顺性控制方法[J]. 交通运输工程学报,2022,22(2): 76-86.

    SHI Jin, ZHANG Yuxiao, CHEN Yunfeng, et al. Track alignment irregularity control method for tamping operation of ballasted high-speed railway[J]. Journal of Traffic and Transportation Engineering, 2022, 22(2): 76-86.
    [9] 李阳腾龙. 高速铁路轨道精测精调及其平顺性优化研究[J]. 测绘学报,2018,47(11): 15-62.

    LI Yangtenglong. Study on track precise inspection and adjustment as well as its regularity optimization for high-speed railways[J]. Acta Geodaetica et Cartographica Sinica, 2018, 47(11): 15-62.
    [10] 李阳腾龙,岑敏仪,谭俊. 增加轨道扣件可调量和相邻点偏差约束的高铁轨道精调优化算法[J]. 铁道学报,2017,39(5): 90-98.

    LI Yangtenglong, CEN Minyi, TAN Jun. An optimization algorithm of track fine adjustment of high-speed railways with added constraints of remaining allowed adjustable values and differences in deviations of adjacent fasteners[J]. Journal of the China Railway Society, 2017, 39(5): 90-98.
    [11] 魏晖,吴仕凤,朱洪涛. 基于相对测量调轨的高速铁路有砟线路整道技术研究[J]. 铁道标准设计,2013,57(8): 11-15.

    WEI Hui, WU Shifeng, ZHU Hongtao. Research on ballast trimming technology based on relative measurement method for ballast track of high-speed railway[J]. Railway Standard Design, 2013, 57(8): 11-15.
    [12] 魏晖,朱洪涛,赵国堂,等. 基于中点弦测模型的无砟轨道精调量迭代求解[J]. 西南交通大学学报,2015,50(1): 131-136.

    WEI Hui, ZHU Hongtao, ZHAO Guotang, et al. Iterative algorithm of HSR ballastless track realignment calculation based on MCO model[J]. Journal of Southwest Jiaotong University, 2015, 50(1): 131-136.
    [13] 杨飞,孙宪夫,魏子龙,等. 基于动静态检测数据的轨道弹性状态评估及平顺性调整方法[J]. 铁道学报,2023,45(5): 82-90.

    YANG Fei, SUN Xianfu, TAN Shehui, et al. Evaluation difference of dynamic and static track irregularity and characteristics of dynamic chord measurement method[J]. Journal of Southwest Jiaotong University, 2023, 45(5): 82-90.
    [14] 杨飞,孙宪夫,谭社会,等. 动静态轨道不平顺评价差异及动态弦测法特性[J]. 西南交通大学学报,2022,57(6): 1239-1249.

    YANG Fei, SUN Xianfu, TAN Shehui, et al. Evaluation difference of dynamic and static track irregularity and characteristics of dynamic chord measurement method[J]. Journal of Southwest Jiaotong University, 2022, 57(6): 1239-1249.
    [15] 梁国栋. 道岔捣固车上的数字化精确捣固法运用[J]. 技术与市场,2020,27(2): 94-95.
    [16] 江来伟,岑敏仪,赵栋. 新建有砟线路精测精捣起道量修正算法[J]. 铁道建筑,2019,59(6): 127-131.

    JIANG Laiwei, CEN Minyi, ZHAO Dong. Lifting correction algorithm of precise inspection and tamping for new-built railway[J]. Railway Engineering, 2019, 59(6): 127-131.
    [17] LEE J S, HWANG S H, CHOI I Y, et al. Deterioration prediction of track geometry using periodic measurement data and incremental support vector regression model[J]. Journal of Transportation Engineering, Part A: Systems, 2020, 146(1): 04019057.1-04019057.12.
    [18] YAN T H, CORMAN F. Assessing and extending track quality index for novel measurement techniques in railway systems[J]. Transportation Research Record: Journal of the Transportation Research Board, 2020, 2674(8): 24-36. doi: 10.1177/0361198120923661
    [19] BARBOUR W, MARTINEZ MORI J C, KUPPA S, et al. Prediction of arrival times of freight traffic on US railroads using support vector regression[J]. Transportation Research Part C: Emerging Technologies, 2018, 93: 211-227. doi: 10.1016/j.trc.2018.05.019
    [20] 葛继科,邱玉辉,吴春明,等. 遗传算法研究综述[J]. 计算机应用研究,2008,25(10): 2911-2916.

    GE Jike, QIU YUhui, WU Chunming, et al. Summary of genetic algorithms research[J]. Application Research of Computers, 2008, 25(10): 2911-2916.
    [21] 杨飞,赵文博,高芒芒,等. 运营期高速铁路轨道长波不平顺静态测量方法及控制标准[J]. 中国铁道科学,2020,41(3): 41-49.

    YANG Fei, ZHAO Wenbo, GAO Mangmang, et al. Static measurement method and control standard for long-wave irregularity of high-speed railway track during operation period[J]. China Railway Science, 2020, 41(3): 41-49.
  • 加载中
图(16) / 表(2)
计量
  • 文章访问数:  250
  • HTML全文浏览量:  65
  • PDF下载量:  35
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-07-30
  • 修回日期:  2022-11-28
  • 网络出版日期:  2023-07-06
  • 刊出日期:  2022-12-01

目录

    /

    返回文章
    返回