• ISSN 0258-2724
  • CN 51-1277/U
  • EI Compendex
  • Scopus 收录
  • 全国中文核心期刊
  • 中国科技论文统计源期刊
  • 中国科学引文数据库来源期刊

带仿生躯干的被动行走机器人步态特性

魏巍 丁维高 谢进

魏巍, 丁维高, 谢进. 带仿生躯干的被动行走机器人步态特性[J]. 西南交通大学学报, 2024, 59(2): 477-484. doi: 10.3969/j.issn.0258-2724.20220463
引用本文: 魏巍, 丁维高, 谢进. 带仿生躯干的被动行走机器人步态特性[J]. 西南交通大学学报, 2024, 59(2): 477-484. doi: 10.3969/j.issn.0258-2724.20220463
WEI Wei, DING Weigao, XIE Jin. Gait Properties of Passive Walking Robots with Bionic Torso[J]. Journal of Southwest Jiaotong University, 2024, 59(2): 477-484. doi: 10.3969/j.issn.0258-2724.20220463
Citation: WEI Wei, DING Weigao, XIE Jin. Gait Properties of Passive Walking Robots with Bionic Torso[J]. Journal of Southwest Jiaotong University, 2024, 59(2): 477-484. doi: 10.3969/j.issn.0258-2724.20220463

带仿生躯干的被动行走机器人步态特性

doi: 10.3969/j.issn.0258-2724.20220463
基金项目: 国家自然科学基金(51575457)
详细信息
    作者简介:

    魏巍(1987—),男,博士研究生,研究方向为机构学、机器人、机械非线性动力学,E-mail:weiwei_super@163.com

    通讯作者:

    谢进(1959—),男,教授,博士,研究方向为机构学、机器人、机械非线性动力学,E-mail:xj_6302@263.net

  • 中图分类号: TP242

Gait Properties of Passive Walking Robots with Bionic Torso

  • 摘要:

    为改善被动行走机器人的步态特性,受人体躯干同时具有刚性骨骼和柔性软组织启发,提出一种带刚柔仿生躯干的被动行走机器人模型,并研究其非线性动力学特性. 将仿生躯干柔性部分等效为带质量的弹簧阻尼器,建立仿生躯干被动行走机器人的动力学模型. 分别分析仿生躯干的等效弹性系数、等效阻尼系数、等效质量对被动行走机器人的行走步长和步行速度的影响规律,并与刚性躯干模型的结果进行对比. 研究结果表明:相比于刚体躯干,仿生躯干使得被动行走具有更加丰富的步态行为;仿生躯干柔性不仅影响被动行走的行走步长及行走速度,还影响被动行走的稳定性;适当的躯干柔性可以在维持稳定周期步态的同时,提高被动行走机器人的行走步长及步行速度;与刚性躯干相比,带仿生躯干的被动行走步长能提高12%,行走速度能提高2%.

     

  • 图 1  带有仿生躯干的被动行走机器人三维模型

    Figure 1.  3D model of passive walking robot with a bionic torso

    图 2  系统的物理模型

    Figure 2.  Physical model of system

    图 3  带有仿生躯干的被动行走机器人广义坐标

    Figure 3.  Generalized coordinates of passive walking robot with a bionic torso

    图 4  行走极限环

    Figure 4.  Limit cycles

    图 5  等效弹性系数k与机器人步态的关系

    Figure 5.  Relationship between equivalent elasticity coefficient k and robot gait

    图 6  等效阻尼系数c与机器人步态的关系

    Figure 6.  Relationship between equivalent damping coefficient c and robot gait

    图 7  等效质量mw与机器人步态的关系

    Figure 7.  Relationship between equivalent mass mw and robot gait

    表  1  刚性躯干机器人仿真参数及其取值

    Table  1.   Simulation parameters and values for rigid torso robot

    参数m
    /kg
    mh
    /kg
    Lmh
    /m
    Lh
    /m
    a,b
    /m
    g/(m·s−2ϕ/rad
    取值5.03.50.250.50.59.810.04
    下载: 导出CSV

    表  2  k=1 600 N/m与k=1800 N/m时平均步长与步行周期的变化

    Table  2.   Change of average step length and walking period when k=1 600 N/m and k=1800 N/m

    k /(N·m−1ΔLT
    数值/m增幅/%数值/s增幅/%
    16000.539670.87356
    18000.525240.87406
    下载: 导出CSV

    表  3  mh=2 kg的行走步长与步行速度(k=100 N/m, c=2 N·s/m, mw=1.0 kg)

    Table  3.   Walking step length and walking speed when mh=2 kg (k=100 N/m, c=2 N·s/m, mw=1.0 kg)

    躯干类型ΔL/mv/(m·s−1
    刚性躯干0.44530.6135
    仿生躯干0.49840.6238
    增幅/%122
    下载: 导出CSV

    表  4  mh =3 kg的行走步长与步行速度 (k=100 N/m, c=2 N·s/m, mw =1.2 kg)

    Table  4.   Walking step length and walking speed when mh=3 kg (k=100 N/m, c=2 N·s/m, mw =1.2 kg)

    躯干类型ΔL/mv/(m·s−1
    刚性躯干0.48710.6130
    仿生躯干0.53750.6225
    增幅/%102
    下载: 导出CSV

    表  5  mh =4 kg的行走步长与步行速度(k=380 N/m, c=2 N·s/m, mw=1.2 kg)

    Table  5.   Walking step length and walking speed when mh=4 kg (k=380 N/m, c=2 N·s/m, mw=1.2 kg)

    躯干类型ΔL/mv/(m·s−1
    刚性躯干0.51890.6110
    仿生躯干0.56000.6185
    增幅/%81
    下载: 导出CSV
  • [1] MCGEER T. Passive dynamic walking[J]. The International Journal of Robotics Research, 1990, 9(2): 62-82. doi: 10.1177/027836499000900206
    [2] SCHONEBAUM J K, ALIJANI F, RADAELLI G. Review on mobile robots that exploit resonance[J]. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 2021, 235(24): 7907-7924. doi: 10.1177/09544062211036923
    [3] MIKOLAJCZYK T, MIKOŁAJEWSKA E, AL-SHUKA H F N, et al. Recent advances in bipedal walking robots: review of gait, drive, sensors and control systems[J]. Sensors, 2022, 22(12): 4440.1-4440.31.
    [4] FATHIZADEH M, MOHAMMADI H, TAGHVAEI S. A modified passive walking biped model with two feasible switching patterns of motion to resemble multi-pattern human walking[J]. Chaos, Solitons & Fractals, 2019, 127: 83-95.
    [5] ZNEGUI W, GRITLI H, BELGHITH S. A new Poincaré map for investigating the complex walking behavior of the compass-gait biped robot[J]. Applied Mathematical Modelling, 2021, 94: 534-557. doi: 10.1016/j.apm.2021.01.036
    [6] WILLIAMS D S, MARTIN A E. Does a finite-time double support period increase walking stability for planar bipeds?[J]. Journal of Mechanisms and Robotics, 2021, 13(1): 011019.1-011019.10.
    [7] 柳宁,李俊峰,王天舒. 双足模型步行中的倍周期步态和混沌步态现象[J]. 物理学报,2009,58(6): 3772-3779. doi: 10.3321/j.issn:1000-3290.2009.06.027

    LIU Ning, LI Junfeng, WANG Tianshu. Period- doubling gait and chaotic gait of biped walking model[J]. Acta Physica Sinica, 2009, 58(6): 3772-3779. doi: 10.3321/j.issn:1000-3290.2009.06.027
    [8] LI J F, TIAN Y T, HUANG X L, et al. Foot shape for passive dynamic kneed biped robot[C]//2010 IEEE International Conference on Robotics and Biomimetics. Tianjin: IEEE, 2011: 1281-1286.
    [9] CHYOU T, LIDDELL G F, PAULIN M G. An upper-body can improve the stability and efficiency of passive dynamic walking[J]. Journal of Theoretical Biology, 2011, 285(1): 126-135. doi: 10.1016/j.jtbi.2011.06.032
    [10] WISSE M, SCHWAB A L, VAN DER HELM F C T. Passive dynamic walking model with upper body[J]. Robotica, 2004, 22(6): 681-688. doi: 10.1017/S0263574704000475
    [11] WISSE M, HOBBELEN D G E, SCHWAB A L. Adding an upper body to passive dynamic walking robots by means of a bisecting hip mechanism[J]. IEEE Transactions on Robotics, 2007, 23(1): 112-123. doi: 10.1109/TRO.2006.886843
    [12] DENG K, ZHAO M G, XU W L. Passive dynamic walking with a torso coupled via torsional springs[J]. International Journal of Humanoid Robotics, 2017, 14(1): 1650024.1-1650024.19.
    [13] 倪修华,陈维山,刘军考,等. 弹簧刚度对被动步行的稳定性影响[J]. 力学学报,2010,42(3): 541-547. doi: 10.6052/0459-1879-2010-3-2009-270

    NI Xiuhua, CHEN Weishan, LIU Junkao, et al. The effect of spring stiffness on the stability of passive dynamic walking[J]. Chinese Journal of Theoretical and Applied Mechanics, 2010, 42(3): 541-547. doi: 10.6052/0459-1879-2010-3-2009-270
    [14] RIGONI I, BONCI T, BIFULCO P, et al. Characterisation of the transient mechanical response and the electromyographical activation of lower leg muscles in whole body vibration training[J]. Scientific Reports, 2022, 12: 6232.1-6232.10.
    [15] VIEN B S, CHIU W K, RUSS M, et al. Modal frequencies associations with musculoskeletal components of human legs for extracorporeal bone healing assessment based on a vibration analysis approach[J]. Sensors, 2022, 22(2): 670-688. doi: 10.3390/s22020670
    [16] ACKERMAN J, SEIPEL J. Energy efficiency of legged robot locomotion with elastically suspended loads[J]. IEEE Transactions on Robotics, 2013, 29(2): 321-330. doi: 10.1109/TRO.2012.2235698
    [17] ACKERMAN J, SEIPEL J. Energetics of bio-inspired legged robot locomotion with elastically-suspended loads[C]//2011 IEEE/RSJ International Conference on Intelligent Robots and Systems. San Francisco: IEEE, 2011: 203-208.
    [18] TANAKA D, ASANO F, TOKUDA I. Gait analysis and efficiency improvement of passive dynamic walking of combined rimless wheel with wobbling mass[C]//2012 IEEE/RSJ International Conference on Intelligent Robots and Systems. Vilamoura-Algarve: IEEE, 2012: 151-156.
    [19] KAWAMOTO J, ASANO F. Active viscoelastic-legged rimless wheel with upper body and its adaptability to irregular terrain[C]//2012 IEEE/RSJ International Conference on Intelligent Robots and Systems. Vilamoura-Algarve: IEEE, 2012: 157-162.
    [20] ASANO F, KAWAMOTO J. Passive dynamic walking of viscoelastic-legged rimless wheel[C]//2012 IEEE International Conference on Robotics and Automation. Saint Paul: IEEE, 2012: 2331-2336.
    [21] AKUTSU Y, ASANO F, TOKUDA I. Passive dynamic walking of compass-like biped robot with dynamic absorbers[C]//2014 IEEE/RSJ International Conference on Intelligent Robots and Systems. Chicago: IEEE, 2014: 4855-4860.
    [22] MURATA H, YAGI T, MIDORIKAWA T, et al. Comparison between DXA and MRI for the visceral fat assessment in athletes[J]. International Journal of Sports Medicine, 2022, 43(7): 625-631. doi: 10.1055/a-1717-1619
    [23] DŪRĪTIS I, HUSSAR P, MUGURĒVIČS A. Gastrin and somatostatin enteroendocrine cells in the small intestines of ostrich (Struthio camelus var. domesticus) during pre-and post-hatching period[J]. Anatomia, Histologia, Embryologia, 2021, 50(3): 550-555. doi: 10.1111/ahe.12660
    [24] HANAZAWA Y, HAYASHI T, YAMAKITA M, et al. High-speed limit cycle walking for biped robots using active up-and-down motion control of wobbling mass[C]//2013 IEEE/RSJ International Conference on Intelligent Robots and Systems. Tokyo: IEEE, 2014: 3649-3654.
    [25] 黄洪猛,张元海. 基于Reissner原理的波形钢腹板箱梁约束扭转分析[J]. 西南交通大学学报,2022,57(5): 1137-1145. doi: 10.3969/j.issn.0258-2724.20210613

    HUANG Hongmeng, ZHANG Yuanhai. Restrained torsion analysis of box girders with corrugated steel webs based on Reissner’s principle[J]. Journal of Southwest Jiaotong University, 2022, 57(5): 1137-1145. doi: 10.3969/j.issn.0258-2724.20210613
    [26] 许晶,李世尧,王斌泰,等. 解析型Timoshenko梁有限单元[J]. 西南交通大学学报,2019,54(3): 492-498. doi: 10.3969/j.issn.0258-2724.20180176

    XU Jing, LI Shiyao, WANG Bintai, et al. Analytical finite element for Timoshenko beams[J]. Journal of Southwest Jiaotong University, 2019, 54(3): 492-498. doi: 10.3969/j.issn.0258-2724.20180176
    [27] 铁摩辛柯 S, 杨 D H, 小韦孚. 工程中的振动问题[M]. 胡人礼, 译. 北京: 人民铁道出版社, 1978.
  • 加载中
图(7) / 表(5)
计量
  • 文章访问数:  305
  • HTML全文浏览量:  81
  • PDF下载量:  44
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-07-02
  • 修回日期:  2022-11-04
  • 网络出版日期:  2023-09-19
  • 刊出日期:  2022-11-11

目录

    /

    返回文章
    返回