• ISSN 0258-2724
  • CN 51-1277/U
  • EI Compendex
  • Scopus 收录
  • 全国中文核心期刊
  • 中国科技论文统计源期刊
  • 中国科学引文数据库来源期刊

基于磁流变复合材料的磁流变阻尼器设计

董小闵 王凯翔 李坪洋

董小闵, 王凯翔, 李坪洋. 基于磁流变复合材料的磁流变阻尼器设计[J]. 西南交通大学学报, 2023, 58(4): 896-902. doi: 10.3969/j.issn.0258-2724.20220454
引用本文: 董小闵, 王凯翔, 李坪洋. 基于磁流变复合材料的磁流变阻尼器设计[J]. 西南交通大学学报, 2023, 58(4): 896-902. doi: 10.3969/j.issn.0258-2724.20220454
DONG Xiaomin, WANG Kaixiang, LI Pingyang. Design of Magnetorheological Damper Based on Magnetorheological Composite Materials[J]. Journal of Southwest Jiaotong University, 2023, 58(4): 896-902. doi: 10.3969/j.issn.0258-2724.20220454
Citation: DONG Xiaomin, WANG Kaixiang, LI Pingyang. Design of Magnetorheological Damper Based on Magnetorheological Composite Materials[J]. Journal of Southwest Jiaotong University, 2023, 58(4): 896-902. doi: 10.3969/j.issn.0258-2724.20220454

基于磁流变复合材料的磁流变阻尼器设计

doi: 10.3969/j.issn.0258-2724.20220454
基金项目: 国家自然科学基金(52075056)
详细信息
    作者简介:

    董小闵(1975—),男,教授,博士生导师,研究方向为智能机械振动控制与机器人,E-mail:xmdong@cqu.edu.cn

  • 中图分类号: TH122

Design of Magnetorheological Damper Based on Magnetorheological Composite Materials

  • 摘要:

    为解决传统磁流变阻尼器存在工作介质易沉降、密封要求较高,且中高频激励下阻尼器刚度快速增大,能耗衰减严重的问题,制备并测试了一种沉降稳定性能良好且密封要求低的磁流变复合材料,建立改进的Herschle-Bulkley模型用以表征复合材料的力学性能;基于该复合材料设计加工出一种剪切式磁流变阻尼器,并设计实验测试中、高频激励下阻尼器的性能响应规律. 研究结果表明:3 A电流激励下,当测试频率由5 Hz增大至20 Hz时,阻尼器动态刚度由4.87 × 105 N/m增加到6.29 × 105 N/m,且全频段阻尼器单周期耗能均在0.04 J左右,验证了所设计的磁流变阻尼器在中高频振动工况下的耗能能力.

     

  • 图 1  磁流变复合材料的磁流变效应示意

    Figure 1.  Schematic of magnetorheological effect of magnetorheological composite materials

    图 2  磁流变复合材料实物

    Figure 2.  Magnetorheological composite material

    图 3  磁流变液的黏塑性模型[15]

    Figure 3.  Viscoplastic model of magnetorheological fluid [15]

    图 4  不同磁场下磁流变液、磁流变复合材料的剪切应力与剪切速率的关系

    Figure 4.  Relationship between shear stress and shear rate of magnetorheological fluid and magnetorheological composite materials under different magnetic fields

    图 5  磁流变复合材料实际测试结果与改进 H-B模型拟合曲线对比

    Figure 5.  Fitting curve comparison between actual test results of magnetorheological composite materials and improved H-B model

    图 6  阻尼器结构简图

    Figure 6.  Damper structure

    图 7  阻尼单元示意

    Figure 7.  Schematic diagram of damping element

    图 8  磁场仿真云图

    Figure 8.  Nephogram of magnetic field

    图 9  磁流变阻尼器样机

    Figure 9.  Magnetorheological damper prototype

    图 10  MTS 测试系统

    Figure 10.  MTS testing system

    图 11  阻尼器定频示功曲线

    Figure 11.  Damper constant frequency indicator curves

    图 12  不同频率下阻尼器单周期耗能随电流变化

    Figure 12.  Variation of single-cycle energy consumption of damper with current at different frequencies

    图 13  不同频率下动态刚度随电流变化

    Figure 13.  Variation of dynamic stiffness with current at different frequencies

    表  1  不同磁场下磁流变复合材料与磁流变液的平均剪切应力对比

    Table  1.   Comparison of average shear stress between magnetorheological composite materials and magnetorheological fluid under different magnetic fields kPa

    磁场强度/ TG28-MRF磁流变复合材料
    00.010.52
    0.133.144.52
    0.227.5510.32
    0.3114.3818.55
    0.4023.7028.57
    0.5336.5544.30
    0.6044.5452.78
    0.7053.3661.49
    0.7658.0366.58
    下载: 导出CSV

    表  2  不同磁场强度下改进H-B模型各参数取值

    Table  2.   Parameter values of improved H-B model under different magnetic field strengths

    B/TKmC0CbaseC1
    00.030.5323.300.010.31
    0.13533.007.91.550.891.44
    0.22761.303.91.410.780.66
    0.31954.304.51.390.560.90
    0.401518.004.11.210.840.76
    0.532016.004.91.211.170.92
    0.601377.005.21.190.970.96
    0.701264.004.21.150.710.81
    0.762164.006.91.131.991.97
    下载: 导出CSV

    表  3  阻尼单元参数

    Table  3.   Damping element parameters mm

    参数数值参数数值
    h0.3${L}_{\mathrm{c} }$6.0
    ${L}_{\mathrm{g} }$30r5.0
    b4.5$ {L}_{1} $9.0
    R19.2$ {L}_{2} $6.5
    下载: 导出CSV

    表  4  阻尼器测试参数

    Table  4.   Damper testing parameters

    名称测试
    频率/Hz
    测试
    振幅/mm
    测试
    电流/A
    取值5, 10, 15, 20±0.10, 0.5, 1.0, 1.5,
    2.0, 2.5, 3.0
    下载: 导出CSV
  • [1] 涂建维,朱倩莹,刘凡,等. 新型防泄漏磁流变阻尼器的密封构造与力学模型[J]. 土木工程学报,2018,51(增2): 92-97. doi: 10.15951/j.tmgcxb.2018.s2.014

    TU Jianwei, ZHU Qianying, LIU Fan, et al. New sealing device and mechanical model of leakproof MR damper[J]. China Civil Engineering Journal, 2018, 51(S2): 92-97. doi: 10.15951/j.tmgcxb.2018.s2.014
    [2] 程海斌. 磁流变液的稳定性调控及其在重大工程中应用[D]. 武汉: 武汉理工大学, 2012.
    [3] 欧进萍,关新春. 磁流变耗能器及其性能[J]. 地震工程与工程振动,1998,18(3): 74-81. doi: 10.3969/j.issn.1000-1301.1998.03.010

    OU Jinping, GUAN Xinchun. Magnetorheological fluid dampers and their properties[J]. Earthquake Engineering and Engineering Vibration, 1998, 18(3): 74-81. doi: 10.3969/j.issn.1000-1301.1998.03.010
    [4] GORDANINEJAD F, WANG X, HITCHCOCK G, et al. Modular high-force seismic magneto-rheological fluid damper[J]. Journal of Structural Engineering, 2010, 136(2): 135-143. doi: 10.1061/(ASCE)0733-9445(2010)136:2(135)
    [5] DAOMING W, WANG Y K, ZI B, et al. Development ofan active and passive finger rehabilitation robot using pneumatic muscle and magnetorheological damper[J]. Mechanism and Machine Theory, 2020, 147: 103762.1-103762.16.
    [6] LEE D Y, NAM Y J, YAMANE R, et al. Performance evaluation on vibration control of MR landing gear[J]. Journal of Physics Conference Series, 2009, 149(1): 012068.1-012068.6.
    [7] HIEMENZ G J, CHOI Y T, WERELEY N M. Semi-active control of vertical stroking helicopter crew seat for enhanced crashworthiness[J]. Journal of Aircraft, 2007, 44(3): 1031-1034. doi: 10.2514/1.26492
    [8] 史文库,张曙光,陈志勇,等. 磁流变半主动座椅悬架建模及振动特性分析[J]. 西南交通大学学报,2023,58(2): 253-260.

    SHI Weiku, ZHANG Shuguang, CHEN Zhiyong, et al. modeling and vibration analysis of semi-active seat suspension with magnetorheological damper[J]. Journal of Southwest Jiaotong University, 2023, 58(2): 253-260.
    [9] 侯保林. 某火炮磁流变缓冲阻尼器的设计与分析[J]. 兵工学报,2006,27(4): 613-616. doi: 10.3321/j.issn:1000-1093.2006.04.008

    HOU Baolin. Design and analysis of a gun recoil magneto-rheological damper[J]. Acta Armamentarii, 2006, 27(4): 613-616. doi: 10.3321/j.issn:1000-1093.2006.04.008
    [10] 焦小磊,马文来,赵阳,等. 中高频激励下微振动流体阻尼器解析模型[J]. 中国科学(技术科学),2017,47(12): 1273-1285. doi: 10.1360/N092017-00312

    JIAO Xiaolei, MA Wenlai, ZHAO Yang, et al. Analytical model of micro-vibration fluid damper under medium and high frequency excitation[J]. Scientia Sinica (Technologica), 2017, 47(12): 1273-1285. doi: 10.1360/N092017-00312
    [11] 左曙光,毛钰,吴旭东,等. 磁流变减振器高频硬化特性建模及优化[J]. 振动与冲击,2016,35(10): 120-125,150. doi: 10.13465/j.cnki.jvs.2016.10.019

    ZUO Shuguang, MAO Yu, WU Xudong, et al. Modelling and optimization of high frequency hardening characteristics of magneto rheological damper[J]. Journal of Vibration and Shock, 2016, 35(10): 120-125,150. doi: 10.13465/j.cnki.jvs.2016.10.019
    [12] 涂奉臣,陈照波,李华,等. 一种改进型磁流变阻尼器用于宽频隔振研究[J]. 振动工程学报,2007,20(5): 484-488. doi: 10.3969/j.issn.1004-4523.2007.05.010

    TU Fengchen, CHEN Zhaobo, LI Hua, et al. Research on improved magnetorheological damper for wide-band vibration control[J]. Journal of Vibration Engineering, 2007, 20(5): 484-488. doi: 10.3969/j.issn.1004-4523.2007.05.010
    [13] 董小闵, 李坪洋, 席军. 一种适用于多领域、多工作模式的具有空间网状纤维基体的磁流变液复合材料及其制备方法: CN114141465A[P]. 2022-12-23.
    [14] YANG G Q. Large-scale magnetorheological fluid Damper for vibration mitigation modeling, testing and control[D]. South Bend: University of Notre Dame, 2001.
    [15] 邢志,吕建刚,李猛. 磁流变液特性分析及实验研究[J]. 磁性材料及器件,2005,36(3): 21-23. doi: 10.3969/j.issn.1001-3830.2005.03.007

    XING Zhi, LV Jiangang, LI Meng. Behavior analysis and experimental research on magnetorheological fluids[J]. Journal of Magnetic Materials and Devices, 2005, 36(3): 21-23. doi: 10.3969/j.issn.1001-3830.2005.03.007
    [16] 周正木. 整星宽频隔振磁流变阻尼器设计理论及试验研究[D]. 重庆: 重庆大学, 2020.
  • 加载中
图(13) / 表(4)
计量
  • 文章访问数:  285
  • HTML全文浏览量:  237
  • PDF下载量:  27
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-06-28
  • 修回日期:  2023-05-09
  • 网络出版日期:  2023-06-08
  • 刊出日期:  2023-05-12

目录

    /

    返回文章
    返回