• ISSN 0258-2724
  • CN 51-1277/U
  • EI Compendex
  • Scopus 收录
  • 全国中文核心期刊
  • 中国科技论文统计源期刊
  • 中国科学引文数据库来源期刊

高速电磁阀能量分布和动态响应耦合关系仿真

赵建辉 陈文菲 杨贵春 陈敬炎

赵建辉, 陈文菲, 杨贵春, 陈敬炎. 高速电磁阀能量分布和动态响应耦合关系仿真[J]. 西南交通大学学报, 2024, 59(6): 1398-1405. doi: 10.3969/j.issn.0258-2724.20220452
引用本文: 赵建辉, 陈文菲, 杨贵春, 陈敬炎. 高速电磁阀能量分布和动态响应耦合关系仿真[J]. 西南交通大学学报, 2024, 59(6): 1398-1405. doi: 10.3969/j.issn.0258-2724.20220452
ZHAO Jianhui, CHEN Wenfei, YANG Guichun, CHEN Jingyan. Simulation Research on Coupling Relationship Between Energy Distribution and Dynamic Response of High-Speed Solenoid Valves[J]. Journal of Southwest Jiaotong University, 2024, 59(6): 1398-1405. doi: 10.3969/j.issn.0258-2724.20220452
Citation: ZHAO Jianhui, CHEN Wenfei, YANG Guichun, CHEN Jingyan. Simulation Research on Coupling Relationship Between Energy Distribution and Dynamic Response of High-Speed Solenoid Valves[J]. Journal of Southwest Jiaotong University, 2024, 59(6): 1398-1405. doi: 10.3969/j.issn.0258-2724.20220452

高速电磁阀能量分布和动态响应耦合关系仿真

doi: 10.3969/j.issn.0258-2724.20220452
基金项目: 国家自然科学基金项目(51879054,52061135203);国家重点研发计划项目(2021YFE0114600)
详细信息
    作者简介:

    赵建辉(1981—),男,副教授,研究方向为高压燃料喷射技术,E-mail:zhao163.163@163.com

  • 中图分类号: TK421.4

Simulation Research on Coupling Relationship Between Energy Distribution and Dynamic Response of High-Speed Solenoid Valves

  • 摘要:

    为研究高速电磁阀内部的能量分布及能量参数与动态响应之间的耦合关系,对高速电磁阀性能进行优化. 首先,基于有限元法建立高速电磁阀动态模型,并通过实验数据验证模型的准确性;其次,利用D最优实验设计方法和最小二乘法,构建以能量参数为因素的电磁阀动态响应特性响应面预测模型;最后,使用元效应分析法开展了高速电磁阀动态响应显著能量参数及参数交互作用的仿真分析. 研究结果表明:单参数中涡流能量E1是影响高速电磁阀开启响应时间To的较敏感参数,To随着E1的增加相应地增加了约25%,涡流能量分别与阻尼能量(E3)和焦耳能量(E4)之间的交互是影响To的高敏感参数,同时涡流能量与焦耳能量之间的交互也是影响关闭响应时间Tc的高敏感参数;交互参数中起主导作用的因素会随取值范围而改变.

     

  • 图 1  高速电磁阀动态响应模型

    Figure 1.  Dynamic response model of high-speed solenoid valve

    图 2  带有电流反馈的高速电磁阀动态响应计算模型

    Figure 2.  Dynamic response calculation model of high-speed solenoid valve with current feedback

    图 3  高速电磁阀动态响应实验装置

    Figure 3.  Experimental device of dynamic response of high-speed solenoid valve

    图 4  仿真和实验的电流和升程数据对比

    Figure 4.  Comparison between simulation and experimental results of current and displacement

    图 5  高速电磁阀工作过程中能量分布

    Figure 5.  Energy distribution of high-speed solenoid valve during operation

    图 6  预测值与仿真值比较

    Figure 6.  Comparison of predicted and simulated values

    图 7  E1To的影响

    Figure 7.  Influence of E1 on To

    图 8  E1E3的交互对To的影响

    Figure 8.  Influence of interaction between E1 and E3 on To

    图 9  E1E4的交互对To的影响

    Figure 9.  Influence of interaction between E1 and E4 on To

    图 10  E1E4的交互对Tc的影响

    Figure 10.  Influence of interaction between E1 and E4 on Tc

    表  1  高速电磁阀不同阶段能量分布

    Table  1.   Energy distribution of high-speed solenoid valves at different stages %

    能量打开阶段保持阶段关闭阶段
    E170.8757.4137.05
    E23.9317.0619.03
    E32.3725.539.69
    E414.5600
    E58.27034.23
    下载: 导出CSV

    表  2  参数变化范围

    Table  2.   Parameter variation range

    改变参数基准值变化范围
    电导率/(S·mm−1200014002600
    弹簧刚度/(N·mm−15747~67
    阻尼系数/(N·(m·s−1−19575~115
    电阻/Ω0.380.18~0.58
    下载: 导出CSV

    表  3  仿真计算矩阵

    Table  3.   Simulation calculation matrix

    组别E1/JE2/JE3/JE4/JTo/msTc/ms
    10.0990.0140.000440.0330.320.22
    20.0860.0160.000190.0310.280.19
    30.0980.0180.000220.0320.340.23
    40.0900.0180.000370.0330.300.21
    50.0860.0120.000950.0310.290.22
    60.0970.0120.000350.0320.370.27
    70.0970.0160.000300.0320.370.26
    80.0860.0180.000280.0310.300.23
    90.0990.0120.000280.0490.340.22
    100.0850.0120.000720.0470.290.21
    110.0950.0180.000410.0480.350.24
    120.0920.0140.000920.0490.310.23
    130.0870.0120.000530.0770.300.21
    140.0820.0180.000590.0750.290.20
    150.0910.0160.000220.0790.350.23
    160.0950.0140.000170.0800.380.25
    170.0820.0120.000790.0750.310.23
    180.0790.0120.000530.0880.290.22
    190.0920.0180.000040.0930.360.22
    200.0920.0120.000140.0930.370.24
    210.0790.0140.000570.0880.300.21
    220.0850.0160.000540.0910.320.23
    230.0930.0120.000450.0970.360.26
    240.0790.0180.000410.0880.320.23
    250.0920.0180.000060.0930.400.26
    260.0920.0180.000060.0930.400.26
    270.0920.0180.000060.0930.400.26
    280.0920.0180.000060.0930.400.26
    下载: 导出CSV

    表  4  能量参数对响应时间的敏感程度

    Table  4.   Sensitivity of energy parameters to response time

    参数开启响应时间的 μ*关闭响应时间的 μ*
    E10.0960.056
    E20.0070.014
    E30.0320.012
    E40.0520.034
    E1E20.0320.112
    E1E30.4910.135
    E1E40.2490.253
    E2E30.0160.099
    E2E40.0770.018
    E3E40.0190.018
    下载: 导出CSV
  • [1] GU Y Q, FAN L Y, ZHANG J Y, et al. Multi-objective optimization of high-speed solenoid valve for biodiesel electronic unit pump[J]. Current Chinese Science, 2022, 1(1): 38-47.
    [2] TAO G, CHEN H Y, J Y Y, et al. Optimal design of the magnetic field of a high-speed response solenoid valve[J]. Journal of Materials Processing Technology, 2002, 129(1/2/3): 555-558.
    [3] WANG Q L, YANG F Y, YANG Q, et al. Experimental analysis of new high-speed powerful digital solenoid valves[J]. Energy Conversion and Management, 2011, 52(5): 2309-2313. doi: 10.1016/j.enconman.2010.12.032
    [4] SUN Z Y, LI G X, WANG L, et al. Effects of structure parameters on the static electromagnetic characteristics of solenoid valve for an electronic unit pump[J]. Energy Conversion and Management, 2016, 113: 119-130. doi: 10.1016/j.enconman.2016.01.031
    [5] ZHAO J H, WANG M L, WANG Z J, et al. Different boost voltage effects on the dynamic response and energy losses of high-speed solenoid valves[J]. Applied Thermal Engineering, 2017, 123: 1494-1503. doi: 10.1016/j.applthermaleng.2017.05.117
    [6] BREIDI F, HELMUS T, LUMKES J. The impact of peak-and-hold and reverse current solenoid driving strategies on the dynamic performance of commercial cartridge valves in a digital pump/motor[J]. International Journal of Fluid Power, 2016, 17(1): 37-47. doi: 10.1080/14399776.2015.1120138
    [7] EBRAHIMI N, SCHIMPF P, JAFARI A. Design optimization of a solenoid-based electromagnetic soft actuator with permanent magnet core[J]. Sensors and Actuators A: Physical, 2018, 284: 276-285. doi: 10.1016/j.sna.2018.10.026
    [8] ZHAO J H, YUE P F, GREKHOV L, et al. Hold current effects on the power losses of high-speed solenoid valve for common-rail injector[J]. Applied Thermal Engineering, 2018, 128: 1579-1587. doi: 10.1016/j.applthermaleng.2017.09.123
    [9] LAN Q, BAI Y, FAN L Y, et al. Investigation on fuel injection quantity of low-speed diesel engine fuel system based on response surface prediction model[J]. Energy, 2020, 211: 118946.1-118946.11.
    [10] MÄKELÄ M. Experimental design and response surface methodology in energy applications: a tutorial review[J]. Energy Conversion and Management, 2017, 151: 630-640. doi: 10.1016/j.enconman.2017.09.021
    [11] VITALI R. Response surface methods for high-dimensional structural design problems[M]. Florida: University of Florida, 2000: 270-289.
    [12] GE Q, MENENDEZ M. Extending Morris method for qualitative global sensitivity analysis of models with dependent inputs[J]. Reliability Engineering & System Safety, 2017, 162: 28-39.
    [13] FENG K X, LU Z Z, XIAO S N. A new global sensitivity measure based on the elementary effects method[J]. Computers & Structures, 2020, 229: 106183.1-106183.12.
    [14] FENG K X, LU Z Z, YANG C Q. Enhanced Morris method for global sensitivity analysis: good proxy of Sobol’ index[J]. Structural and Multidisciplinary Optimization, 2019, 59(2): 373-387. doi: 10.1007/s00158-018-2071-7
  • 加载中
图(10) / 表(4)
计量
  • 文章访问数:  353
  • HTML全文浏览量:  67
  • PDF下载量:  29
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-06-28
  • 修回日期:  2022-11-30
  • 网络出版日期:  2023-12-12
  • 刊出日期:  2022-12-01

目录

    /

    返回文章
    返回