• ISSN 0258-2724
  • CN 51-1277/U
  • EI Compendex
  • Scopus 收录
  • 全国中文核心期刊
  • 中国科技论文统计源期刊
  • 中国科学引文数据库来源期刊

考虑浆土应力耦合作用的劈裂注浆机理分析

秦鹏飞 钟宏伟 刘坚 苏丹娜 孙卓宇

秦鹏飞, 钟宏伟, 刘坚, 苏丹娜, 孙卓宇. 考虑浆土应力耦合作用的劈裂注浆机理分析[J]. 西南交通大学学报, 2023, 58(3): 584-591. doi: 10.3969/j.issn.0258-2724.20220433
引用本文: 秦鹏飞, 钟宏伟, 刘坚, 苏丹娜, 孙卓宇. 考虑浆土应力耦合作用的劈裂注浆机理分析[J]. 西南交通大学学报, 2023, 58(3): 584-591. doi: 10.3969/j.issn.0258-2724.20220433
QIN Pengfei, ZHONG Hongwei, LIU Jian, SU Danna, SUN Zhuoyu. Analysis of Split Grouting Mechanism Considering Coupling Effect of Slurry and Soil Stress[J]. Journal of Southwest Jiaotong University, 2023, 58(3): 584-591. doi: 10.3969/j.issn.0258-2724.20220433
Citation: QIN Pengfei, ZHONG Hongwei, LIU Jian, SU Danna, SUN Zhuoyu. Analysis of Split Grouting Mechanism Considering Coupling Effect of Slurry and Soil Stress[J]. Journal of Southwest Jiaotong University, 2023, 58(3): 584-591. doi: 10.3969/j.issn.0258-2724.20220433

考虑浆土应力耦合作用的劈裂注浆机理分析

doi: 10.3969/j.issn.0258-2724.20220433
基金项目: 国家自然科学基金青年基金(62003313);中央高校基本科研业务费专项资金资助(lzujbky-2021-kb03);河海大学岩土力学与堤坝工程教育部重点实验室开放基金(2022LP002)
详细信息
    作者简介:

    秦鹏飞(1985—),男,副教授,研究方向为岩土与地下工程,E-mail:929163723@qq.com

  • 中图分类号: TU43.1

Analysis of Split Grouting Mechanism Considering Coupling Effect of Slurry and Soil Stress

  • 摘要:

    浆土应力耦合作用对劈裂注浆浆液扩散规律具有显著影响,砂土劈裂注浆设计应充分考虑这种影响作用. 将劈裂注浆视作平面无限域的圆形扩张过程,基于牛顿型本构方程分析了浆液流场变化特征,并将劈裂通道下侧砂层视作半无限空间弹性体,采用弹性力学推导了均布荷载下劈裂通道宽度、浆液压力的分布方程. 通过设置不同的浆液黏度、砂土弹性模量参数,深刻揭示了耦合效应下砂土劈裂注浆基本机理. 结合郑州地铁某在建工程进行了对比验证. 研究结果表明:浆液压力在孔口及远端处急速衰减,而在中间区段呈稳定变化趋势,劈裂通道宽度基本由浆液压力决定,其分布趋势与浆液压力分布趋势相同;浆液黏度、砂土弹性模量是影响劈裂扩散半径的重要因素,黏度和模量均与扩散半径正相关,黏度与劈裂宽度正相关,模量则与劈裂宽度负相关;本文理论计算值与现场开挖实际值偏差12%~15%,基本符合预期要求.

     

  • 图 1  砂土劈裂注浆机理分析

    Figure 1.  Mechanism analysis of split grouting in sandy soil

    图 2  劈裂注浆力学机理分析

    Figure 2.  Mechanical mechanism analysis of split grouting

    图 3  注浆压力沿程分布

    Figure 3.  Grouting pressure distribution

    图 4  劈裂注浆浆-土耦合作用分析

    Figure 4.  Slurry-soil coupling effect analysis of split grouting

    图 5  浆液扩散半径与注浆压力差关系

    Figure 5.  Relationship between slurry diffusion radius and grouting pressure

    图 6  注浆压力沿程衰减规律

    Figure 6.  Relationship between slurry diffusion radius and grouting pressure

    图 7  劈裂宽度沿程衰减规律

    Figure 7.  Relationship between slurry diffusion radius and splitting gap

    图 8  隧道开挖揭露浆脉

    Figure 8.  Slurry veins exposed during tunnel excavation

    表  1  郑州地铁区间隧道砂土力学参数

    Table  1.   Mechanical parameters of sandy soil in Zhengzhou Metro Tunnel

    参数天然密度/(g·cm−3干密度/(g·cm−3弹性模量/MPa泊松比含水率/%含泥量/%注浆影响范围/m
    取值2.011.685.940.3823.311.810
    下载: 导出CSV
  • [1] DONGSOON P, JEHEON O. Permeation grouting for remediation of dam cores[J]. Engineering Geology, 2018, 233: 63-75. doi: 10.1016/j.enggeo.2017.12.011
    [2] 张庆松,王洪波,刘人太,等. 考虑浆液扩散路径的多孔介质渗透注浆机理研究[J]. 岩土工程学报,2018,40(5): 918-924. doi: 10.11779/CJGE201805017

    ZHANG Qingsong, WANG Hongbo, LIU Rentai, et al. Infiltration grouting mechanism of porous media considering diffusion paths of grout[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(5): 918-924. doi: 10.11779/CJGE201805017
    [3] RASOULI R, HAYASHI K, ZEN K. Controlled permeation grouting method for mitigation of liquefaction[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2016, 142(11): 1-11.
    [4] 刘人太,郑卓,李术才,等. 地下工程裂隙型涌水超前注浆治理方法[J]. 西南交通大学学报,2019,54(1): 48-54.

    LIU Rentai, ZHENG Zhuo, LI Shucai, et al. Pre-excavation grouting to prevent water inflow of jointed rock in underground construction[J]. Journal of Southwest Jiaotong University, 2019, 54(1): 48-54.
    [5] 李召峰,李术才,刘人太,等. 富水破碎岩体注浆加固实验与机制研究[J]. 岩石力学与工程学报,2017,36(1): 198-207. doi: 10.13722/j.cnki.jrme.2016.0119

    LI Zhaofeng, LI Shucai, LIU Rentai, et al. Grouting reinforcement experiment for water-rich broken rock mass[J]. Chinese Journal of Rock Mechanics and Engineering, 2017, 36(1): 198-207. doi: 10.13722/j.cnki.jrme.2016.0119
    [6] 张庆松,张连震,张霄,等. 基于浆液黏度时空变化的水平裂隙岩体注浆扩散机制[J]. 岩石力学与工程学报,2015,34(6): 1198-1210. doi: 10.13722/j.cnki.jrme.2014.0958

    ZHANG Qingsong, ZHANG Lianzhen, ZHANG Xiao, et al. Grouting diffusion in a horizontal crack considering temporal and spatial variation of viscosity[J]. Chinese Journal of Rock Mechanics and Engineering, 2015, 34(6): 1198-1210. doi: 10.13722/j.cnki.jrme.2014.0958
    [7] 叶飞,秦楠,梁兴,等. 基于驱替效应的盾构壁后注浆微观模型分析[J]. 西南交通大学学报,2022,57(2): 339-345. doi: 10.3969/j.issn.0258-2724.20200344

    YE Fei, QIN Nan, LIANG Xing, et al. Microscopic model analysis of shield tunnel backfill grouting based on displacement effect[J]. Journal of Southwest Jiaotong University, 2022, 57(2): 339-345. doi: 10.3969/j.issn.0258-2724.20200344
    [8] 张连震,李志鹏,张庆松,等. 基于土体非线性压密效应的劈裂注浆机制分析[J]. 岩石力学与工程学报,2016,35(7): 1483-1493. doi: 10.13722/j.cnki.jrme.2015.0565

    ZHANG Lianzhen, LI Zhipeng, ZHANG Qingsong, et al. Split grouting mechanism based on nonlinear characteristics of compression process of soil[J]. Chinese Journal of Rock Mechanics and Engineering, 2016, 35(7): 1483-1493. doi: 10.13722/j.cnki.jrme.2015.0565
    [9] 张庆松,张连震,刘人太,等. 基于“浆-土”界面应力耦合效应的劈裂注浆理论研究[J]. 岩土工程学报,2016,38(2): 323-330.

    ZHANG Qingsong, ZHANG Lianzhen, LIU Rentai, et al. Split grouting theory based on slurry-soil coupling effects[J]. Chinese Journal of Geotechnical Engineering, 2016, 38(2): 323-330.
    [10] 秦鹏飞. 不良地质体注浆细观力学模拟研究[J]. 煤炭学报,2020,45(7): 2646-2654. doi: 10.13225/j.cnki.jccs.2019.0634

    QIN Pengfei. Study on meso-mechanical simulation of grouting in bad geo-body[J]. Journal of China Coal Society, 2020, 45(7): 2646-2654. doi: 10.13225/j.cnki.jccs.2019.0634
    [11] 申时钊,涂小兵,雷进生,等. 不同渗透系数的非均质黏土劈裂注浆数值模拟[J]. 水利水运工程学报,2022(5): 102-112.

    SHEN Shizhao, TU Xiaobing, LEI Jinsheng, et al. Numerical simulation of split grouting of heterogeneous clay with different permeability coefficient[J]. Hydro-Science and Engineering, 2022(5): 102-112.
    [12] 刘海明,卢昊正,南敢,等. 基于黏度时变性的Herschel-Bulkley流体劈裂注浆扩散特性研究[J]. 自然灾害学报,2022,31(3): 213-221.

    LIU Haiming, LU Haozheng, NAN Gan, et al. Research on diffusion characteristics of Herschel-Bulkley fluid fracture grouting based on time variation of viscosity[J]. Journal of Natural Disasters, 2022, 31(3): 213-221.
    [13] 周茗如,张建斌,卢国文,等. 扩孔理论在非饱和黄土劈裂注浆中的应用[J]. 建筑结构学报,2018,39(增1): 368-378. doi: 10.14006/j.jzjgxb.2018.S1.048

    ZHOU Mingru, ZHANG Jianbin, LU Guowen, et al. Application of expansion hole theory in fracture grouting of unsaturated loess[J]. Journal of Building Structures, 2018, 39(S1): 368-378. doi: 10.14006/j.jzjgxb.2018.S1.048
    [14] 蔡德国,叶飞,曹凯,等. 砂性地层盾构隧道壁后注浆浆液扩散室内试验[J]. 中国公路学报,2018,31(10): 274-283.

    CAI Deguo, YE Fei, CAO Kai, et al. Test of grout diffusion of shield tunnel backfill grouting in sandy strata[J]. China Journal of Highway and Transport, 2018, 31(10): 274-283.
    [15] WANG S Y, CHAN D H, LAM K C, et al. A new laboratory apparatus for studying dynamic compaction grouting into granular soils[J]. Soils and Foundations, 2013, 53(3): 462-468. doi: 10.1016/j.sandf.2013.04.007
    [16] 付艳斌,陈湘生,吕桂阳,等. 基于小孔扩张弹塑性理论的注浆起始劈裂压力研究[J]. 中国公路学报,2020,33(12): 154-163. doi: 10.3969/j.issn.1001-7372.2020.12.012

    FU Yanbin, CHEN Xiangsheng, LYU Guiyang, et al. Study on initial fracture pressure of grouting based on the elastic-plastic theory of cavity expansion[J]. China Journal of Highway and Transport, 2020, 33(12): 154-163. doi: 10.3969/j.issn.1001-7372.2020.12.012
    [17] 徐芝纶. 弹性力学(上册)[M]. 4版. 北京: 高等教育出版社, 2006.
    [18] 姚茂宏,谢长岭,程少振,等. 双孔劈裂条件下地应力及孔间应力的耦合分析[J]. 北京交通大学学报,2021,45(3): 61-68. doi: 10.11860/j.issn.1673-0291.20200140

    YAO Maohong, XIE Changling, CHENG Shaozhen, et al. Coupling analysis of in-situ stress and inter hole stress under double-hole splitting[J]. Journal of Beijing Jiaotong University, 2021, 45(3): 61-68. doi: 10.11860/j.issn.1673-0291.20200140
    [19] PANTAZOPOULOS I A, MARKOU I N, CHRISTODOULOU D N, et al. Development of microfine cement grouts by pulverizing ordinary cements[J]. Cement and Concrete Composites, 2012, 34(5): 593-603. doi: 10.1016/j.cemconcomp.2012.01.009
    [20] KANG S P, KWON S J. Effects of red mud and Alkali-activated slag cement on efflorescence in cement mortar[J]. Construction and Building Materials, 2017, 133: 459-467.
    [21] PEPPER R A, COUPERTHWAITE S J, MILLAR G J. Comprehensive examination of acid leaching behaviour of mineral phases from red mud: recovery of Fe, Al, Ti, and Si[J]. Minerals Engineering, 2016, 99: 8-18. doi: 10.1016/j.mineng.2016.09.012
    [22] 张淼,邹金锋,陈嘉祺,等. 非对称荷载作用下土体劈裂注浆压力分析[J]. 岩土力学,2013,34(8): 2255-2263.

    ZHANG Miao, ZOU Jinfeng, CHEN Jiaqi, et al. Analysis of soil fracturing grouting pressure under asymmetric loads[J]. Rock and Soil Mechanics, 2013, 34(8): 2255-2263.
    [23] 邹金锋,童无欺,罗恒,等. 基于Hoek-Brown强度准则的裂隙岩体劈裂注浆力学机理[J]. 中南大学学报(自然科学版),2013,44(7): 2889-2896.

    ZOU Jinfeng, TONG Wuqi, LUO Heng, et al. Mechanism of fracture grouting for fractured rock based on Hoek-Brown failure criterion[J]. Journal of Central South University (Science and Technology), 2013, 44(7): 2889-2896.
    [24] 黄明利,管晓明,吕奇峰. 基于弹性力学的诱导劈裂注浆机制分析[J]. 岩土力学,2013,34(7): 2059-2064.

    HUANG Mingli, GUAN Xiaoming, LÜ Qifeng. Mechanism analysis of induced fracture grouting based on elasticity[J]. Rock and Soil Mechanics, 2013, 34(7): 2059-2064.
    [25] 张连震,张庆松,刘人太,等. 基于浆液-岩体耦合效应的微裂隙岩体注浆理论研究[J]. 岩土工程学报,2018,40(11): 2003-2011.

    ZHANG Lianzhen, ZHANG Qingsong, LIU Rentai, et al. Grouting mechanism in fractured rock considering slurry-rock stress coupling effects[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(11): 2003-2011.
    [26] 邹金锋,李亮,杨小礼. 劈裂注浆扩散半径及压力衰减分析[J]. 水利学报,2006,37(3): 314-319. doi: 10.3321/j.issn:0559-9350.2006.03.010

    ZOU Jinfeng, LI Liang, YANG Xiaoli. Penetration radius and pressure attenuation law in fracturing grouting[J]. Journal of Hydraulic Engineering, 2006, 37(3): 314-319. doi: 10.3321/j.issn:0559-9350.2006.03.010
    [27] 张忠苗,邹健. 桩底劈裂注浆扩散半径和注浆压力研究[J]. 岩土工程学报,2008,30(2): 181-184.

    ZHANG Zhongmiao, ZOU Jian. Penetration radius and grouting pressure in fracture grouting[J]. Chinese Journal of Geotechnical Engineering, 2008, 30(2): 181-184.
    [28] ZHOU H, LIU H L, ZHA Y H, et al. Influence of stress anisotropy on the cylindrical cavity expansion in undrained elastic-perfectly plastic soil[J]. Science China Technological Sciences, 2018, 61(3): 370-380. doi: 10.1007/s11431-017-9127-7
  • 加载中
图(8) / 表(1)
计量
  • 文章访问数:  423
  • HTML全文浏览量:  99
  • PDF下载量:  75
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-05-20
  • 修回日期:  2022-09-02
  • 网络出版日期:  2023-04-10
  • 刊出日期:  2023-01-05

目录

    /

    返回文章
    返回