• ISSN 0258-2724
  • CN 51-1277/U
  • EI Compendex
  • Scopus 收录
  • 全国中文核心期刊
  • 中国科技论文统计源期刊
  • 中国科学引文数据库来源期刊

考虑电网支撑能力的储换一体站容量优化配置

郭爱 叶涵昌 戴朝华 王永强 叶圣永 陈维荣

郭爱, 叶涵昌, 戴朝华, 王永强, 叶圣永, 陈维荣. 考虑电网支撑能力的储换一体站容量优化配置[J]. 西南交通大学学报, 2023, 58(6): 1257-1266. doi: 10.3969/j.issn.0258-2724.20220431
引用本文: 郭爱, 叶涵昌, 戴朝华, 王永强, 叶圣永, 陈维荣. 考虑电网支撑能力的储换一体站容量优化配置[J]. 西南交通大学学报, 2023, 58(6): 1257-1266. doi: 10.3969/j.issn.0258-2724.20220431
GUO Ai, YE Hanchang, DAI Chaohua, WANG Yongqiang, YE Shengyong, CHEN Weirong. Capacity Optimization Configuration of Electric Vehicle Swapping-Storage Integrated Station Considering Support Ability to Grid[J]. Journal of Southwest Jiaotong University, 2023, 58(6): 1257-1266. doi: 10.3969/j.issn.0258-2724.20220431
Citation: GUO Ai, YE Hanchang, DAI Chaohua, WANG Yongqiang, YE Shengyong, CHEN Weirong. Capacity Optimization Configuration of Electric Vehicle Swapping-Storage Integrated Station Considering Support Ability to Grid[J]. Journal of Southwest Jiaotong University, 2023, 58(6): 1257-1266. doi: 10.3969/j.issn.0258-2724.20220431

考虑电网支撑能力的储换一体站容量优化配置

doi: 10.3969/j.issn.0258-2724.20220431
基金项目: 四川省自然科学基金(2022NSFSC0269);国家电网公司科技项目(SGSCJY00GHJS2200024)
详细信息
    作者简介:

    郭爱(1970—) ,女,讲师,博士,研究方向为新能源技术及应用、大功率燃料混合系统建模及控制等,E-mail:634576728@qq.com

    通讯作者:

    戴朝华(1973—),男,副教授,博士,博士生导师,研究方向为能源互联网规划与运行优化、轨道交通新能源技术等,E-mail:daichaohua@swjtu.edu.cn

  • 中图分类号: TM715

Capacity Optimization Configuration of Electric Vehicle Swapping-Storage Integrated Station Considering Support Ability to Grid

  • 摘要:

    电动汽车换电站同时作为储能电站,既可实现经济获利,又兼顾电网支撑,但目前缺乏这种储换一体站的容量配置研究. 为此,本文首先分析储换一体站工作模式及电价时段,构建一体站的运行模型;然后,基于用户出行模拟,建立电动汽车换电需求预测模型;接着,建立考虑全寿命周期收益和电网支撑能力的储换一体站容量双层规划模型,外层规划以全寿命周期总收益为目标,实现储换一体站的容量规划,内层规划以对电网支撑能力为目标,实现电池组充放电行为优化,内层获得最优充放电功率并返回外层,实现储换一体站容量最优配置;最后,在 IEEE33 节点系统上验证规划模型的有效性,为储换一体站建设提供理论支撑. 研究结果表明:与其他储换一体站模式相比,储换一体站投资收益率提高 1.51%~2.26%;基于双层规划的容量优化配置方法,在保证一体站经济性的同时,能够对支撑电网电压,使电压日方差降低 20%;随着参与换电的电动汽车数量增加,一体站的经济性进一步提高.

     

  • 图 1  储换一体站结构及能量流动关系

    Figure 1.  Structure and energy flows of EVSS-IS

    图 2  一个时间段储换一体站内能量流动关系

    Figure 2.  Energy flow of EVSS-IS in a time period

    图 3  电动汽车单位时间行驶距离概率分布

    Figure 3.  Distribution of EV mileage per unit time

    图 4  规划模型求解流程

    Figure 4.  Flow chart of solving bi-level planning model

    图 5  某地10 kV系统典型日负荷曲线及分时电价

    Figure 5.  Typical daily load curve of a 10 kV system and a time-of-use tariff

    图 6  优化收敛曲线

    Figure 6.  Optimized convergence curves for the case

    图 7  部分换电需求场景

    Figure 7.  Part of demand scenarios for battery swapping

    图 8  不同聚类数对应DB指标

    Figure 8.  DB index corresponding to different clustering numbers

    图 9  换电需求典型聚类场景

    Figure 9.  Typical clustering scenarios for battery swapping

    图 10  不同换电场景下规划结果

    Figure 10.  Optimization results under different demand scenarios for battery swapping

    图 11  不同接入节点储换一体站成本与收益

    Figure 11.  Costs and benefits of EVSS-IS at different nodes

    图 12  典型日负荷下测试系统电压取值范围

    Figure 12.  Range of system voltage under typical daily load

    表  1  储换一体站参数表

    Table  1.   Parameters of EVSS-IS

    参数数值参数数值
    Ebat/(kW·h)100CES,E/(元·(kW·h)−11800
    CEV,E/(元·(kW·h)−11280CP/(元·kW−12400
    COM/(元·(kW·年)−1155DEV/(元·(kW·h)−11.47
    DES,b/(元·(kW·h)−10.15DEV,b/(元·(kW·h)−10.1
    Drt/(元·年−110800$ {\eta _{\text{c}}}{\text{, }}{\eta _{\text{d}}} $0.9
    r/%5N/a15
    下载: 导出CSV

    表  2  换电需求典型聚类场景统计结果

    Table  2.   Statistical results of demands for battery swapping on typical clustering scenarios

    场景编号 总需求/次 概率
    1 20 0.0785
    2 25 0.4189
    3 30 0.3265
    4 35 0.1397
    5 40 0.0364
    下载: 导出CSV

    表  3  接入节点为11、18时不同情景下的规划结果

    Table  3.   Optimization results for different scenarios with the accessing 11th, 18th nodes

    接入
    节点
    方案
    编号
    储能容
    量/(MW·h)
    储能功
    率/MW
    换电容
    量/(MW·h)
    换电功
    率/MW
    年均净
    利润/万元
    电压日
    方差
    年均成
    本/万元
    111102.003.50.6060.5906.0303598.61
    213.52.700042.9615.3699534.91
    3003.50.6117.0165.9595216.55
    410.02.003.50.6053.5105.6288621.68
    57.6981
    1812.70.543.50.7126.1595.7167320.57
    26.21.260019.8855.6637245.51
    3003.50.7316.3185.9594214.94
    42.70.543.50.7125.4405.6904336.27
    57.6981
    下载: 导出CSV
  • [1] 杨健维,杨鹤,张夏霖,等. 基于换电规则优化与车辆-电池组匹配的电动公交车充换电站充电优化策略[J]. 中国电机工程学报,2019,39(8): 2337-2347. doi: 10.13334/J.0258-8013.PCSEE.172500

    YANG Jianwei, YANG He, ZHANG Xialin, et al. A charging optimization strategy on charging and swapping station for electric buses based on optimization of switching rules and matching of buses and batteries[J]. Proceedings of the CSEE, 2019, 39(8): 2337-2347. doi: 10.13334/J.0258-8013.PCSEE.172500
    [2] 陈丽丹,张尧,FIGUEIREDO Antonio. 电动汽车充放电负荷预测研究综述[J]. 电力系统自动化,2019,43(10): 177-191. doi: 10.7500/AEPS20180814001

    CHEN Lidan, ZHANG Yao, FIGUEIREDO A. Overview of charging and discharging load forcasting for electric vehicles[J]. Automation of Electric Power Systems, 2019, 43(10): 177-191. doi: 10.7500/AEPS20180814001
    [3] LI G, ZHANG X P. Modeling of plug-in hybrid electric vehicle charging demand in probabilistic power flow calculations[J]. IEEE Transactions on Smart Grid, 2012, 3(1): 492-499. doi: 10.1109/TSG.2011.2172643
    [4] 杜习超,刘永民,徐则诚,等. 电动汽车随机负荷建模及对配电网节点电压分布的影响[J]. 电力自动化设备,2018,38(6): 124-130. doi: 10.16081/j.issn.1006-6047.2018.06.018

    DU Xichao, LIU Yongmin, XU Zecheng, et al. Modeling of random load of electric vehicle and its influence on node voltage distribution of distribution network[J]. Electric Power Automation Equipment, 2018, 38(6): 124-130. doi: 10.16081/j.issn.1006-6047.2018.06.018
    [5] LYU L, YANG X R, XIANG Y, et al. Exploring high-penetration electric vehicles impact on urban power grid based on voltage stability analysis[J]. Energy, 2020, 198: 117301.1-117301.12.
    [6] PIMM A J, PALCZEWSKI J, MORRIS R, et al. Community energy storage: a case study in the UK using a linear programming method[J]. Energy Conversion and Management, 2020, 205: 112388.1-112388.11.
    [7] ANEKE M, WANG M H. Energy storage technologies and real life applications—a state of the art review[J]. Applied Energy, 2016, 179: 350-377. doi: 10.1016/j.apenergy.2016.06.097
    [8] YUAN H T, WEI G, ZHU L, et al. Optimal scheduling for micro-grid considering EV charging−swapping−storage integrated station[J]. IET Generation, Transmission & Distribution, 2020, 14(6): 1127-1137.
    [9] 韦钢,李明,卢炜,等. 充放储一体站并网的多级阶梯电压控制分区方法[J]. 中国电机工程学报,2015,35(15): 3823-3831. doi: 10.13334/j.0258-8013.pcsee.2015.15.010

    WEI Gang, LI Ming, LU Wei, et al. Multistage ladder voltage control partitioning method containing grid-connected charging-discharging-storage integrative station[J]. Proceedings of the CSEE, 2015, 35(15): 3823-3831. doi: 10.13334/j.0258-8013.pcsee.2015.15.010
    [10] 吴万禄,周江昕,余浩斌,等. 含充放储一体化电站的电网供电能力评估[J]. 电网技术,2018,42(4): 1266-1273. doi: 10.13335/j.1000-3673.pst.2017.0202

    WU Wanlu, ZHOU Jiangxin, YU Haobin, et al. Power supply capability evaluation of power grid containing integrated charging-discharging-storage station[J]. Power System Technology, 2018, 42(4): 1266-1273. doi: 10.13335/j.1000-3673.pst.2017.0202
    [11] ZHENG Y, DONG Z Y, XU Y, et al. Electric vehicle battery charging/swap stations in distribution systems: comparison study and optimal planning[J]. IEEE Transactions on Power Systems, 2014, 29(1): 221-229. doi: 10.1109/TPWRS.2013.2278852
    [12] WU H, PANG G K H, CHOY K L, et al. An optimization model for electric vehicle battery charging at a battery swapping station[J]. IEEE Transactions on Vehicular Technology, 2018, 67(2): 881-895. doi: 10.1109/TVT.2017.2758404
    [13] WU C Y, GU W, XU Y L, et al. Bi-level optimization model for integrated energy system considering the thermal comfort of heat customers[J]. Applied Energy, 2018, 232: 607-616. doi: 10.1016/j.apenergy.2018.09.212
    [14] 田梦瑶,汤波,杨秀,等. 综合考虑充电需求和配电网接纳能力的电动汽车充电站规划[J]. 电网技术,2021,45(2): 498-509. doi: 10.13335/j.1000-3673.pst.2020.0636

    TIAN Mengyao, TANG Bo, YANG Xiu, et al. Planning of electric vehicle charging stations considering charging demands and acceptance capacity of distribution network[J]. Power System Technology, 2021, 45(2): 498-509. doi: 10.13335/j.1000-3673.pst.2020.0636
    [15] 贾龙,胡泽春,宋永华,等. 储能和电动汽车充电站与配电网的联合规划研究[J]. 中国电机工程学报,2017,37(1): 73-84. doi: 10.13334/j.0258-8013.pcsee.160818

    JIA Long, HU Zechun, SONG Yonghua, et al. Joint planning of distribution networks with distributed energy storage systems and electric vehicle charging stations[J]. Proceedings of the CSEE, 2017, 37(1): 73-84. doi: 10.13334/j.0258-8013.pcsee.160818
    [16] DING H J, HU Z C, SONG Y H. Value of the energy storage system in an electric bus fast charging station[J]. Applied Energy, 2015, 157: 630-639. doi: 10.1016/j.apenergy.2015.01.058
    [17] GARVEY S D, EAMES P C, WANG J H, et al. On generation-integrated energy storage[J]. Energy Policy, 2015, 86: 544-551. doi: 10.1016/j.enpol.2015.08.001
    [18] NUH E, DRAGAN P, SADIK K, et al. An integrated multi-objective optimization and multi-criteria decision-making model for optimal planning of workplace charging stations[J]. Applied Energy, 2021, 304: 117866.1-117866.15. doi: 10.1016/j.apenergy.2021.117866
    [19] 何晨可,韦钢,朱兰,等. 电动汽车充换放储一体化电站选址定容[J]. 中国电机工程学报,2019,39(2): 479-489,645. doi: 10.13334/j.0258-8013.pcsee.181446

    HE Chenke, WEI Gang, ZHU Lan, et al. Locating and sizing of electric vehicle charging-swapping-discharging-storage integrated station[J]. Proceedings of the CSEE, 2019, 39(2): 479-489,645. doi: 10.13334/j.0258-8013.pcsee.181446
    [20] 曾梦隆,韦钢,朱兰,等. 交直流配电网中电动汽车充换储一体站规划[J]. 电力系统自动化,2021,45(18): 52-60. doi: 10.7500/AEPS20210112007

    ZENG Menglong, WEI Gang, ZHU Lan, et al. Planning of electric vehicle charging-swapping-storage integrated station in AC/DC distribution network[J]. Automation of Electric Power Systems, 2021, 45(18): 52-60. doi: 10.7500/AEPS20210112007
    [21] 胡代豪,郭力,刘一欣,等. 计及光储快充一体站的配电网随机-鲁棒混合优化调度[J]. 电网技术,2021,45(2): 507-519. doi: 10.13335/j.1000-3673.pst.2020.0838

    HU Daihao, GUO Li, LIU Yixin, et al. Stochastic/robust hybrid optimal dispatching of distribution networks considering fast charging stations with photovoltaic and energy storage[J]. Power System Technology, 2021, 45(2): 507-519. doi: 10.13335/j.1000-3673.pst.2020.0838
    [22] Department of Transportation, Federal Highway Administration. Summary of travel trends: 2009 national household travel survey [EB/OL]. (2011-02-28)[2022-03-13]. https://nhts.org/gov/2009/pub/stt.pdf.
    [23] 陈静鹏,艾芊,肖斐. 基于用户出行需求的电动汽车充电站规划[J]. 电力自动化设备,2016,36(6): 34-39. doi: 10.16081/j.issn.1006-6047.2016.06.006

    CHEN Jingpeng, AI Qian, XIAO Fei. EV charging station planning based on travel demand[J]. Electric Power Automation Equipment, 2016, 36(6): 34-39. doi: 10.16081/j.issn.1006-6047.2016.06.006
    [24] HERRERA V, MILO A, GAZTAÑAGA H, et al. Adaptive energy management strategy and optimal sizing applied on a battery-supercapacitor based tramway[J]. Applied Energy, 2016, 169: 831-845. doi: 10.1016/j.apenergy.2016.02.079
  • 加载中
图(12) / 表(3)
计量
  • 文章访问数:  213
  • HTML全文浏览量:  175
  • PDF下载量:  33
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-06-16
  • 修回日期:  2022-10-13
  • 网络出版日期:  2023-09-02
  • 刊出日期:  2022-10-13

目录

    /

    返回文章
    返回