• ISSN 0258-2724
  • CN 51-1277/U
  • EI Compendex
  • Scopus 收录
  • 全国中文核心期刊
  • 中国科技论文统计源期刊
  • 中国科学引文数据库来源期刊

实测轮轨蠕滑曲线对钢轨磨耗影响分析

王平 宋娟 杨春凯 安博洋 陈嵘

王平, 宋娟, 杨春凯, 安博洋, 陈嵘. 实测轮轨蠕滑曲线对钢轨磨耗影响分析[J]. 西南交通大学学报. doi: 10.3969/j.issn.0258-2724.20220392
引用本文: 王平, 宋娟, 杨春凯, 安博洋, 陈嵘. 实测轮轨蠕滑曲线对钢轨磨耗影响分析[J]. 西南交通大学学报. doi: 10.3969/j.issn.0258-2724.20220392
WANG Ping, SONG Juan, YANG Chunkai, AN Boyang, CHEN Rong. Effect of Measured Wheel-Rail Creep Curves on Rail Wear[J]. Journal of Southwest Jiaotong University. doi: 10.3969/j.issn.0258-2724.20220392
Citation: WANG Ping, SONG Juan, YANG Chunkai, AN Boyang, CHEN Rong. Effect of Measured Wheel-Rail Creep Curves on Rail Wear[J]. Journal of Southwest Jiaotong University. doi: 10.3969/j.issn.0258-2724.20220392

实测轮轨蠕滑曲线对钢轨磨耗影响分析

doi: 10.3969/j.issn.0258-2724.20220392
基金项目: 国家自然科学基金(52108418,U1934214);中央高校基本科研业务费(2682021CX016);四川省杰出青年科技人才项目(2020JDJQ0033)
详细信息
    作者简介:

    王平(1969—),男,教授,博士,研究方向为道路与铁道工程,E-mail:wping@home.swjtu.edu.cn

  • 中图分类号: U211.5

Effect of Measured Wheel-Rail Creep Curves on Rail Wear

  • 摘要:

    轮轨蠕滑曲线会影响轮轨动态相互作用,进而影响钢轨磨耗,为研究实测轮轨蠕滑曲线对钢轨磨耗的影响,首先,基于最小二乘法获得了适用于Polach模型和修改FASTSIM算法的参数,模拟40~400 km/h行车速度范围内的实测蠕滑曲线;随后,在SIMPACK软件中建立车辆系统动力学模型并通过Polach模型考虑实测蠕滑曲线;最后,采用Kik-Piotrowski模型和修改的FASTSIM算法进行轮轨非赫兹滚动接触计算,并结合USFD磨耗模型预测钢轨磨耗,对比了理想与实测蠕滑曲线条件下钢轨磨耗的差异. 研究表明:理想蠕滑曲线条件下钢轨磨耗深度明显大于实测蠕滑曲线下的结果,随着车辆通过次数的增加,理想条件下钢轨磨耗分布范围更大,内外轨磨耗分布范围分别为实测蠕滑曲线的1.5倍和1.3倍;摩擦系数和磨耗率显著影响钢轨磨耗大小及磨耗分布情况,故在车辆动力学仿真和钢轨磨耗计算中有必要考虑实测轮轨蠕滑曲线;形成了确定实测蠕滑曲线参数的前处理程序,可服务于车辆动力学仿真和钢轨磨耗计算,可以有效指导现场进行钢轨打磨等养护维修工作.

     

  • 图 1  计算流程

    Figure 1.  Calculation flow chart

    图 2  修改的FASTSIM算法拟合实测轮轨蠕滑曲线

    Figure 2.  Measured wheel-rail creep curve fitted by modified FASTSIM algorithm

    图 3  不同蠕滑曲线下通过新轨后钢轨磨耗深度分布

    Figure 3.  Rail wear depth distribution with vehicles passing new rail under different creep curves

    图 4  不同蠕滑曲线下第5次廓形更新后钢轨磨耗深度分布

    Figure 4.  Rail wear depth distribution after the fifth profile update under different creep curves

    图 5  外轨侧接触斑黏滑分布及切向应力分布

    Figure 5.  Stick-slip distribution and tangential stress distribution of outer rail contact patch

    图 6  不同摩擦系数下通过新轨后钢轨磨耗深度分布

    Figure 6.  Rail wear depth distribution with vehicles passing new rail under different friction coefficients

    图 7  不同摩擦系数下5次廓形更新后的钢轨磨耗深度分布

    Figure 7.  Rail wear depth distribution after the fifth profile update under different friction coefficients

    图 8  外轨侧接触斑黏滑分布及切向应力分布

    Figure 8.  Stick-slip distribution and tangential stress distribution of outer rail contact patch

    图 9  不同磨耗率下5次廓形更新后的钢轨磨耗深度分布

    Figure 9.  Rail wear depth distribution after the fifth profile update under different wear rates

    表  1  修改的FASTSIM算法参数

    Table  1.   Modified FASTSIM algorithm parameters

    速度V/(km·h−1 k0 μ0 A B
    40 0.85 0.340 0.46 27.00
    160 0.47 0.120 0.38 5.15
    200 0.39 0.075 0.31 4.40
    300 0.32 0.056 0.16 1.90
    400 0.27 0.050 0.16 1.70
    下载: 导出CSV

    表  2  Polach模型参数表

    Table  2.   Polach model parameters

    V/(km·h−1 kA kS μ0 A B
    40 0.80 0.44 0.74 0.23 40.0
    160 0.50 0.14 0.32 0.16 7.8
    200 0.47 0.13 0.19 0.14 7.6
    300 0.37 0.11 0.13 0.12 4.0
    400 0.24 0.10 0.10 0.08 2.5
    下载: 导出CSV
  • [1] 王文健, 刘启跃. 轮轨黏着行为与增黏[M]. 北京: 科学出版社, 2017.
    [2] 安博洋,王平,徐义新,等. 基于POLACH方法的轮轨蠕滑曲线研究[J]. 机械工程学报,2018,54(4): 124-131. doi: 10.3901/JME.2018.04.124

    AN Boyang, WANG Ping, XU Yixin, et al. Study on wheel/rail creep curve based on POLACH’s method[J]. Journal of Mechanical Engineering, 2018, 54(4): 124-131. doi: 10.3901/JME.2018.04.124
    [3] KALKER J J. A fast algorithm for the simplified theory of rolling contact[J]. Vehicle System Dynamics, 1982, 11(1): 1-13. doi: 10.1080/00423118208968684
    [4] SHEN Z Y, HEDRICK J K, ELKINS J A. A comparison of alternative creep force models for rail vehicle dynamic analysis[J]. Vehicle System Dynamics, 1983, 12(1/2/3): 79-83.
    [5] POLACH O. A fast wheel-rail forces calculation computer code[J]. Vehicle System Dynamics, 1999, 33(S1): 728-739. doi: 10.1080/00423114.1999.12063125
    [6] POLACH O. Creep forces in simulations of traction vehicles running on adhesion limit[J]. Wear, 2005, 258(7/8): 992-1000.
    [7] SPIRYAGIN M, POLACH O, COLE C. Creep force modelling for rail traction vehicles based on the Fastsim algorithm[J]. Vehicle System Dynamics, 2013, 51(11): 1765-1783. doi: 10.1080/00423114.2013.826370
    [8] VOLLEBREGT E A H. Numerical modeling of measured railway creep versus creep-force curves with CONTACT[J]. Wear, 2014, 314(1/2): 87-95.
    [9] 王璞,高亮,蔡小培. 重载铁路钢轨磨耗演变过程的数值模拟[J]. 铁道学报,2014,36(10): 70-75. doi: 10.3969/j.issn.1001-8360.2014.10.012

    WANG Pu, GAO Liang, CAI Xiaopei. Numerical simulation of rail wear evolution of heavy-hual railways[J]. Journal of the China Railway Society, 2014, 36(10): 70-75. doi: 10.3969/j.issn.1001-8360.2014.10.012
    [10] WANG P, GAO L. Numerical simulation of wheel wear evolution for heavy haul railway[J]. Journal of Central South University, 2015, 22(1): 196-207. doi: 10.1007/s11771-015-2510-1
    [11] 姜涵文,高亮,安博伦,等. 基于神经网络的钢轨磨耗与通过总重关联关系的预测方法[J]. 铁道学报,2021,43(10): 75-83.

    JIANG Hanwen, GAO Liang, AN Bolun, et al. A neural network-based prediction approach of relationship between rail wear and gross traffic tonnage[J]. Journal of the China Railway Society, 2021, 43(10): 75-83.
    [12] 杨新文,刘小山,沈剑罡,等. 现代有轨电车线路轨底坡对槽型轨磨耗的影响[J]. 同济大学学报(自然科学版),2019,47(4): 528-534.

    YANG Xinwen, LIU Xiaoshan, SHEN Jiangang, et al. Effect of rail cant on groove-shaped rail wear in modern tram line[J]. Journal of Tongji University (Natural Science), 2019, 47(4): 528-534.
    [13] 李浩,孙加林,赵国堂. 动车所小半径曲线钢轨磨耗研究[J]. 中国铁道科学,2020,41(6): 39-51.

    LI Hao, SUN Jialin, ZHAO Guotang. Research on rail wear of small radius curve in EMU depot[J]. China Railway Science, 2020, 41(6): 39-51.
    [14] TAO G Q, DU X, ZHANG H J, et al. Development and validation of a model for predicting wheel wear in high-speed trains[J]. Journal of Zhejiang University-Science A, 2017, 18(8): 603-616. doi: 10.1631/jzus.A1600693
    [15] TAO G Q, WEN Z F, GUAN Q H, et al. Locomotive wheel wear simulation in complex environment of wheel-rail interface[J]. Wear, 2019, 430/431: 214-221. doi: 10.1016/j.wear.2019.05.012
    [16] TRAN M T, ANG K K, LUONG V H, et al. High-speed trains subject to abrupt braking[J]. Vehicle System Dynamics, 2016, 54(12): 1715-1735. doi: 10.1080/00423114.2016.1232837
    [17] HERTZ H. Ueber die Berührung fester elastischer Körper[M]//JournaL Für Die Reine Und Angewandte Mathematik Band 92. [S.l.]: De Gruyter, 1882: 156-171.
    [18] PIOTROWSKI J, KIK W. A simplified model of wheel/rail contact mechanics for non-Hertzian problems and its application in rail vehicle dynamic simulations[J]. Vehicle System Dynamics, 2008, 46(1/2): 27-48.
    [19] 常崇义,陈波,蔡园武,等. 基于全尺寸试验台的水介质条件下高速轮轨黏着特性试验研究[J]. 中国铁道科学,2019,40(2): 25-32. doi: 10.3969/j.issn.1001-4632.2019.02.04

    CHANG Chongyi, CHEN Bo, CAI Yuanwu, et al. Experimental study on adhesion property of high speed wheel and rail in wet condition by full scale roller rig[J]. China Railway Science, 2019, 40(2): 25-32. doi: 10.3969/j.issn.1001-4632.2019.02.04
    [20] BRAGHIN F, LEWIS R, DWYER-JOYCE R S, et al. A mathematical model to predict railway wheel profile evolution due to wear[J]. Wear, 2006, 261(11/12): 1253-1264.
    [21] WANG W J, LEWIS R, YANG B, et al. Wear and damage transitions of wheel and rail materials under various contact conditions[J]. Wear, 2016, 362/363: 146-152. doi: 10.1016/j.wear.2016.05.021
  • 加载中
图(9) / 表(2)
计量
  • 文章访问数:  70
  • HTML全文浏览量:  43
  • PDF下载量:  26
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-05-31
  • 修回日期:  2022-08-22
  • 网络出版日期:  2023-11-18

目录

    /

    返回文章
    返回