Characteristics and Significance of New Geological Tectonic Activities in Niba Mountain Fault Zone
-
摘要:
在京昆高速公路雅安至西昌段泥巴山隧道场地区构造地质测绘中发现了新的地质构造现象,为论证泥巴山断裂带性质和新构造现象的区域地质构造意义,采用石英颗粒形态扫描、地质力学与岩体力学原理和数值模拟分析方法. 首先,阐述泥巴山隧道场地区的工程地质环境和新构造现象;然后,论述泥巴山断裂带边界断层和区域构造的活动性;其次,对新构造现象的区域地质构造意义进行探讨;最后,利用数值模拟分析论证新构造现象的存在性和区域构造新格架证据的合理性. 结果表明:泥巴山断裂带具有明显的新构造活动特征;新构造变形现象所属的泥巴山断裂带与川西“Y”字形活动构造带中的鲜水河活动断裂带有成因上的同根性,是鲜水河断裂带的东南延伸部分;泥巴山断裂带及其东南延伸断裂(峨边—马边—雷波段)与川西“Y”字形活动构造带构成了原生性的类“X”形构造模式,并具有孕育中强震活动的条件.
Abstract:New geological phenomena have been found in the structural geological mapping of Niba Mountain tunnel field of Ya’an to Xichang section of Beijing−Kunming Expressway. To demonstrate the nature of the Niba Mountain fault zone and new tectonic phenomena of regional geological tectonic significance, using quartz particle morphology scan, geological mechanics and rockmass mechanics theory and numerical simulation analysis method, first elaborated the area of Niba Mountain tunnel engineering geological environment and the new tectonic phenomena, and then discusses the Niba Mountain fault zone boundary faults and tectonic activity, Secondly, the regional geological tectonic significance of the neotectonic phenomenon is discussed. Finally, the existence of the neotectonic phenomenon and the rationality of the evidence of the regional tectonic new framework are demonstrated by numerical simulation analysis. The results show that: 1) the Niba Mountain fault zone has obvious neotectonic activity characteristics; 2) the Niba Mountain fault zone to which the new tectonic deformation phenomenon belongs has genetic homology with the Xianshuihe active fault zone in the “Y” shaped active tectonic zone in western Sichuan, which is the southeast extension of the Xianshuihe fault zone; 3) the Niba Mountain fault zone and its southeastern extension fault (Ebian−Mabian−Leibo segment) and the “Y” shaped active tectonic zone in western Sichuan constitute the original “X” type tectonic model, and have the conditions for the breeding of moderate and strong earthquake activities.
-
Key words:
- Niba Mountain /
- neotectonic phenomena /
- movable structure /
- fault zone
-
表 1 中小断层参数统计表
Table 1. Statistics of parameters of small and medium fault
按断层走向统计 按断层倾角统计 走向 条数/条 占比/% 倾角/(°) 条数/条 占比/% NEE 3 7.1 0~15 0 0 NE 5 11.9 15~30 0 0 NNE 3 7.1 30~45 1 2.4 NNW 5 21.5 45~60 6 14.3 NW 17 40.5 60~75 14 33.3 NWW 9 11.9 75~90 21 50.0 表 2 石英颗粒形态电子扫描显微(SEM)测年结果
Table 2. SEM dating results of quartz grains
等级代号形态 贝壳状 Io 次贝壳状 Ia 橘皮状 Ib 鱼鳞状 Ic 苔藓状 Ⅱ 钟乳/虫蛀
状 Ⅲ锅穴/珊瑚状 Ⅳ 活动年代推测 观测个数/个 占比/% 观测个数/个 占比/% 观测个数/个 占比/% 观测个数/个 占比/% 观测个数/个 占比/% 观测个数/个 占比/% 观测个数/个 占比/% 现象 1 0 0 5 15.6 0 0 9 28.1 18 56.3 0 0 0 0 ${\rm{N}}_2^1 $、${\rm{N}}_2^2 $概率最大,Q1 及 Q3 均有 现象 2 10 9.8 24 23.6 9 8.8 18 17.6 18 17.6 12 11.8 11 10.8 Q3 概率最大,其余均有 现象 3 10 7.5 29 21.6 9 6.7 27 20.1 36 26.9 12 9.0 11 8.2 ${\rm{N}}_2^1 $、${\rm{N}}_2^2 $ 概率最大,其余均有 现象 4 0 0 1 4 0 0 7 28.0 17 68.0 0 0 0 0 ${\rm{N}}_2^1 $、${\rm{N}}_2^2 $ 概率最大,Q1 及 Q3 均有 年代/万年 0~
1.17(Q4)1.17~
12.60(Q3)12.60~
78.00(Q2)78.00~
259.00(Q1)259.00~
360.00(${\rm{N}}_2^2 $)360.00~
530.00(${\rm{N}}_2^1 $)>530.00
(N1)总样品数 293 个 表 3 西南部分地区地震线特征
Table 3. Seismic line characteristics in parts of southwest China
序号 地震线
名称经过地 方向 长度/km 所处的活动构造带名称 (1) 筠连—东川 筠连—昭通—东川 N32.8°E 283.7 东川—筠连—华蓥山 (2) 犍为—永仁 千位—马边—美姑—攀枝花—永仁 N32.8°E 430.2 犍为—马边,攀枝花—永仁 (3) 平武—丽江 平武—汶川—宝兴—宁蒗—丽江 N32.8°E 797.8 龙门山,木里—宁蒗—丽江 (4) 九寨沟—腾冲 九寨沟—松潘—新都桥—稻城—中甸—腾冲 N32.8°E 853.1 九寨沟—黑水,丹巴—新都桥,
中甸—腾冲(5) 松潘—曲靖 松潘—校场—汶川—马边—
东川—曲靖SN 708.7 松潘—校场,龙门山,马边—昭通,
东川曲靖(6) 马尔康—西昌 马尔康—金川—丹巴—石棉—
冕宁—西昌SN 468.5 安宁河,鲜水河及龙门山 (7) 甘孜—大理 甘孜—新龙—理塘—丽江—大理 SN 625.3 甘孜—理塘,丽江—大理 (8) 甘孜—马边 甘孜—炉霍—道孚—康定—马边 N32.8°W 602.1 鲜水河,马边—永善 (9) 理塘—曲靖 理塘—西昌—宁南—巧家—
东川—曲靖N32.8°W 592.2 理塘—木里,西昌巧家,东川—曲靖 (10) 中甸—永仁 中甸—丽江—永仁 N32.8°W 289 中甸—丽江—永仁 表 4 断层特征简表
Table 4. Summary of fault characteristics
断裂带名称 产状 长度/km 性质 组成断层/条 活动年限/万年 备注 鲜水河断裂 N40.0°W/SW∠60° 400 左旋兼逆冲 3 1.00 (全新世) 区域性断裂 龙门山断裂 N40.0°E/NW∠60° 500 右旋兼逆冲 3 1.00 (全新世) 安宁河断裂 N2.0°E/SE∠70° 350 逆冲兼左旋 2 1.00 (全新世) 荥—马断裂 N28.0°W/SW∠60° 250 逆冲兼左旋 9 1.00 (全新世) 九襄断裂 N60.0°E/NW∠47° 30 压扭 1 6.24~7.15 (晚更新世) 隧址区控制性断裂 保凰断裂 N40.0°W/SW∠75° 100 左旋兼逆冲 2 40.70~51.90 (中更新世) 金坪断裂 N20.0°W/NE∠60° 84 左旋斜冲 1 10.72~12.54 (晚更新世) 红花断裂带 N30.0°W/SW∠85° 50 压性 1 36.76~43.06 (中更新世) 曹大坪断层 N35.0°W/SW∠86° 25 压扭 1 6.40~7.60 (晚更新世) 表 5 岩体工程特性参数表
Table 5. Rock engineering characteristic parameter
深度
段/km分区 容重/
(kN·m−3)弹性模量/GPa 泊松比 内摩擦角/(°) 黏聚
力/MPa[0, 5] Ⅰ 24.0 45 0.22 40 25.00 Ⅱ 26.0 40 0.22 35 20.00 Ⅲ 26.0 35 0.22 37 22.00 断层岩 21.0 2 0.24 17 0.10 (5, 15] Ⅰ 26.0 80 0.25 55 37.00 Ⅱ 26.5 75 0.25 50 32.00 Ⅲ 26.5 70 0.24 45 27.00 断层岩 22.0 3 0.26 18 0.10 (15, 25] 完整岩 2.7 90 0.26 60 50.00 断层岩 24.0 5 0.27 19 0.12 (25, 45] 完整岩 2.8 100 0.28 55 45.00 断层岩 25.0 5 0.28 19 0.12 表 6 隧址区岩体地应力测试结果
Table 6. Ground stress test results of rock mass in tunnel area
孔号 压裂段
深度/m应力值/MPa 较大水平主应力方向 σH σh σv Zk2 351.20 16.02 10.10 9.31 N37.0°W Zk2 430.74 20.12 14.20 11.42 N20.0°W Zk3 662.23 19.59 13.23 17.23 N48.0°W Zk3 753.50 18.56 13.16 19.60 N68.0°W Zk3 906.45 21.41 15.04 23.58 N58.0°W Zk4 1113.12 25.08 18.11 28.92 N55.0°W Zk4 1262.49 29.54 21.98 32.80 N59.0°W Zk4 1324.27 32.84 22.98 34.40 N67.0°W Zk5 617.35 9.56 8.21 16.81 N52.0°W Zk5 804.62 14.33 12.85 21.90 N67.0°W Zk5 831.11 17.86 13.26 22.60 N75.0°W 表 7 区域岩体地应力测试结果
Table 7. Ground stress test results of rock mass in region
测量地点 岩性及时代 σH/MPa σh/MPa 最大主应
力方向普格荞窝 奥陶纪灰岩 6.22 4.70 N54.4°W 冕宁泸沽 燕山期花岗岩 4.12 3.66 N59.3°W 丹巴 海西期角闪岩 5.35 3.45 N24.2°W 雅江 三叠纪砂岩 6.48 4.84 N56.0°W 宝兴锅巴岩 奥陶纪大理岩 8.75 6.13 N60.7°W 康定呷巴 三叠纪砂板岩 6.55 5.15 N85.7°W 康定长河坝 晋宁期花岗岩 6.15 3.00 N82°W 天全 老第三纪砂岩 4.69 3.29 N68.6°W 雅安 老第三纪砂岩 4.13 2.50 N45.0°W 乾宁 三叠纪砂岩 3.65 2.46 N53.4°W 理塘 三叠纪板岩 8.50 4.55 N34.5°W 义敦 燕山期花岗岩 4.76 1.66 N33.4°W -
[1] MA J, WANG M M, HA G H, et al. Latest quaternary active faulting and paleoearthquakes on the yalahe fault of the Xianshuihe fault zone, eastern Tibetan Plateau[J]. Tectonophysics, 2022, 837: 229448.1-229448.16. [2] WANG E, BURCHFIEL B C. Late cenozoic to holocene deformation in southwestern Sichuan and adjacent Yunnan, China, and its role in formation of the southeastern part of the Tibetan Plateau[J]. Geological Society of America Bulletin, 2000, 112(3): 413-423. doi: 10.1130/0016-7606(2000)112<413:LCTHDI>2.0.CO;2 [3] PAPADIMITRIOU E, WEN X Z, KARAKOSTAS V, et al. Earthquake triggering along the Xianshuihe fault zone of western Sichuan, China[J]. Pure and Applied Geophysics, 2004, 161(8): 1683-1707. doi: 10.1007/s00024-003-2471-4 [4] 蔡宁波,何磊,王晓龙,等. 川西坳陷须三段致密砂岩气藏源储特征及成藏模式[J]. 地质科技通报,2021,40(6): 1-14.CAI Ningbo, HE Lei, WANG Xiaolong, et al. Characteristics of reservoir-source rock and hydrocarbon accumulation model of tight sandstone gas reservoirs in the third member of Xujiahe Formation in western Sichuan depression[J]. Bulletin of Geological Science and Technology, 2021, 40(6): 1-14. [5] 张浩然,姜华,陈志勇,等. 四川盆地及周缘地区加里东运动幕次研究现状综述[J]. 地质科技通报,2020,39(5): 118-126.ZHANG Haoran, JIANG Hua, CHEN Zhiyong, et al. A review of the research status of Caledonian movement stages in Sichuan Basin and surrounding areas[J]. Bulletin of Geological Science and Technology, 2020, 39(5): 118-126. [6] 王辉,刘杰,石耀霖,等. 鲜水河断裂带强震相互作用的动力学模拟研究[J]. 中国科学(D辑:地球科学),2008,38(7): 808-818. [7] 潘家伟,李海兵,Marie-Luce CHEVALIER,等. 鲜水河断裂带色拉哈—康定段新发现的活动断层:木格措南断裂[J]. 地质学报,2020,94(11): 3178-3188.PAN Jiawei, LI Haibin, Marie-Luce CHEVALIER, et al. A newly discovered active fault on the Selaha− Kangding segment along the SE Xianshuihe fault: the South Mugecuo fault[J]. Acta Geologica Sinica, 2020, 94(11): 3178-3188. [8] 陈立春,陈杰,刘进峰,等. 龙门山前山断裂北段晚第四纪活动性研究[J]. 地震地质,2008,30(3): 710-722.CHEN Lichun, CHEN Jie, LIU Jinfeng, et al. Investigation of late quaternary activity along the northern range-front fault, Longmenshan[J]. Seismology and Geology, 2008, 30(3): 710-722. [9] 文广超,苏林雪,谢洪波,等. “5·12”汶川地震前后四川省主要地质灾害时空发育规律[J]. 地质科技通报,2021,40(4): 143-152.WEN Guangchao, SU Linxue, XIE Hongbo, et al. Spatio-temporal development characteristics of major geohazards in Sichuan Province around “5·12” Wenchuan earthquake[J]. Bulletin of Geological Science and Technology, 2021, 40(4): 143-152. [10] 杨晓平,冯希杰,戈天勇,等. 龙门山断裂带北段第四纪活动的地质地貌证据[J]. 地震地质,2008,30(3): 644-657.YANG Xiaoping, FENG Xijie, GE Tianyong, et al. Geological and geomorphic evidence for the Quaternary activity on the northeast segment of Longmenshan fault zone[J]. Seismology and Geology, 2008, 30(3): 644-657. [11] 焦青,杨选辉,许丽卿,等. 汶川8.0级地震前后龙门山断裂活动特征浅析[J]. 大地测量与地球动力学,2008,28(4): 7-11,37.JIAO Qing, YANG Xuanhui, XU Liqing, et al. Preliminary study on motion characteristics of Longmenshan fault before and after Ms 8.0 Wenchuan earthquake[J]. Journal of Geodesy and Geodynamics, 2008, 28(4): 7-11,37. [12] 赵祎喆,吴忠良,蒋长胜,等. 用地震资料估计的龙门山断裂深部形变及其对于汶川地震成因的意义[J]. 地质学报,2008,82(12): 1778-1787.ZHAO Yizhe, WU Zhongliang, JIANG Changsheng, et al. Present deep deformation along the Longmenshan fault by seismic data and implications for the tectonic context of the Wenchuan earthquake[J]. Acta Geologica Sinica, 2008, 82(12): 1778-1787. [13] 张致伟,程万正,阮祥,等. 汶川8.0级地震前龙门山断裂带的地震活动性和构造应力场特征[J]. 地震学报,2009,31(2): 117-127.ZHANG Zhiwei, CHENG Wanzheng, RUAN Xiang, et al. Seismicity and tectonic stress of the Longmenshan fault zone before 2008 Wenchuan Ms 8.0 earthquake[J]. Acta Seismologica Sinica, 2009, 31(2): 117-127. [14] 闻学泽,范军,易桂喜,等. 川西安宁河断裂上的地震空区[J]. 中国科学(D辑:地球科学),2008,38(7): 797-807. [15] HE H L, IKEDA Y. Faulting on the Anninghe fault zone southwest China in late quaternary and its movement model[J]. Acta Seismologica Sinica, 2007, 20(5): 571-583. doi: 10.1007/s11589-007-0571-4 [16] 朱艾斓,徐锡伟,甘卫军,等. 鲜水河—安宁河—则木河断裂带上可能存在的凹凸体: 来自背景地震活动性的证据[J]. 地学前缘,2009,16(1): 218-225.ZHU Ailan, XU Xiwei, GAN Weijun, et al. The possible asperities on the Xianshuihe–Anninghe–Zemuhe fault zone: evidence from background seismicity[J]. Earth Science Frontiers, 2009, 16(1): 218-225. [17] 翁剑桥,曾联波,吕文雅,等. 断层附近地应力扰动带宽度及其影响因素[J]. 地质力学学报,2020,26(1): 39-47.WENG Jianqiao, ZENG Lianbo, LYU Wenya, et al. Width of stress disturbed zone near fault and its influencing factors[J]. Journal of Geomechanics, 2020, 26(1): 39-47. [18] 韩竹军,何玉林,安艳芬,等. 新生地震构造带—马边地震构造带最新构造变形样式的初步研究[J]. 地质学报,2009,83(2): 218-229.HAN Zhujun, HE Yulin, AN Yanfen, et al. A new seismotectonic belt: features of the latest structural deformation style in the Mabian seismotectonic zone[J]. Acta Geologica Sinica, 2009, 83(2): 218-229. [19] 黎厚富. 荥经—马边—盐津地震构造带中北段构造特征分析[J]. 四川有色金属,2020(1): 43-46.LI Houfu. Structural characteristics analysis of the middle and north section of Yingjing–Mabian–Yanjin seismic structural belt[J]. Sichuan Nonferrous Metals, 2020(1): 43-46. [20] 许尧. 泥巴山隧道隧址区新构造活动现象及稳定性研究[D]. 成都: 西南交通大学, 2010. [21] 颜天佑,崔臻,张勇慧,等. 跨活动断裂隧洞工程赋存区域地应力场分布特征研究[J]. 岩土力学,2018,39(增1): 378-386.YAN Tianyou, CUI Zhen, ZHANG Yonghui, et al. Study of distribution characteristics of in-situ stress field in occurrence area of crossing active fault tunnel engineering[J]. Rock and Soil Mechanics, 2018, 39(S1): 378-386. [22] 徐正,李天斌,孟陆波,等. 鹧鸪山隧道地应力反演模型与三维地应力[J]. 成都理工大学学报(自然科学版),2014,41(2): 243-250.XU Zheng, LI Tianbin, MENG Lubo, et al. Zhegu Mountain tunnel ground stress inversion model and three dimensional ground stress[J]. Journal of Chengdu University of Technology (Science & Technology Edition), 2014, 41(2): 243-250. [23] 师皓宇,马念杰,马骥. 龙门山断裂带形成过程及其地应力状态模拟[J]. 地球物理学报,2018,61(5): 1817-1823.SHI Haoyu, MA Nianjie, MA Ji. Numerical simulation for the formation process of the Longmenshan fault zone and its crustal stress state[J]. Chinese Journal of Geophysics, 2018, 61(5): 1817-1823. [24] 师皓宇,马念杰. 龙门山断裂带及附近区域地貌形成与地应力演化机制研究[J]. 地震学报,2018,40(3): 332-340.SHI Haoyu, MA Nianjie. Geomorphic formation and crustal stress evolution mechanism in the Longmenshan fault zone and its adjacent regions[J]. Acta Seismologica Sinica, 2018, 40(3): 332-340.