• ISSN 0258-2724
  • CN 51-1277/U
  • EI Compendex
  • Scopus 收录
  • 全国中文核心期刊
  • 中国科技论文统计源期刊
  • 中国科学引文数据库来源期刊

疲劳裂纹气动冲击的维修机理及效果

袁周致远 吉伯海 傅慧 孟城

袁周致远, 吉伯海, 傅慧, 孟城. 疲劳裂纹气动冲击的维修机理及效果[J]. 西南交通大学学报, 2024, 59(2): 307-314. doi: 10.3969/j.issn.0258-2724.20220365
引用本文: 袁周致远, 吉伯海, 傅慧, 孟城. 疲劳裂纹气动冲击的维修机理及效果[J]. 西南交通大学学报, 2024, 59(2): 307-314. doi: 10.3969/j.issn.0258-2724.20220365
YUANZHOU Zhiyuan, JI Bohai, FU Hui, MENG Cheng. Fatigue Crack Repair Mechanism and Effect by Pneumatic Impact Treatment[J]. Journal of Southwest Jiaotong University, 2024, 59(2): 307-314. doi: 10.3969/j.issn.0258-2724.20220365
Citation: YUANZHOU Zhiyuan, JI Bohai, FU Hui, MENG Cheng. Fatigue Crack Repair Mechanism and Effect by Pneumatic Impact Treatment[J]. Journal of Southwest Jiaotong University, 2024, 59(2): 307-314. doi: 10.3969/j.issn.0258-2724.20220365

疲劳裂纹气动冲击的维修机理及效果

doi: 10.3969/j.issn.0258-2724.20220365
基金项目: 国家重点研发计划(2017YFE0128700);江苏省自然科学基金(BK20200511);江苏省交通运输科技项目(2020Y22)
详细信息
    作者简介:

    袁周致远(1990—),男,副教授,博士,研究方向为钢桥疲劳与维护,E-mail:supery.z@hotmail.com

    通讯作者:

    吉伯海(1966—),男,教授,博士,研究方向为钢桥疲劳与维护,E-mail:bhji@hhu.edu.cn

  • 中图分类号: U443.32

Fatigue Crack Repair Mechanism and Effect by Pneumatic Impact Treatment

  • 摘要:

    为探明气动冲击技术对钢桥面板疲劳裂纹的维修机理及修复效果,首先基于动力学理论,研究气动冲击过程中靶材的塑性变形规律,分析在塑性变形作用下的裂纹表面闭合过程;随后,采用数值模拟,探讨裂纹表面闭合部位的局部应力场及其在受载作用下的应力响应和变形规律;最后,通过疲劳试验对气动冲击的维修效果进行对比验证. 结果表明:所提出的数学模型可对冲击深度进行预测,气动冲击过程中材料表面将产生显著的塑性变形,其冲击深度与横向变形近似相等;当裂纹断面横向相对变形量大于裂纹宽度时,会产生接触闭合及相互挤压行为,从而在接触闭合部位形成局部压应力区;该压应力能够一定程度上抵抗外荷载对裂纹表面的张拉作用,降低裂纹尖端应力强度因子,从而延缓或阻碍疲劳裂纹扩展.

     

  • 图 1  气动冲击维修技术

    Figure 1.  Pneumatic impact treatment

    图 2  累积塑性变形测量试验

    Figure 2.  Experiment of measuring cumulative plastic deformation

    图 3  理论与试验结果对比

    Figure 3.  Comparison between theoretical and experimental results

    图 4  冲击过程仿真模型

    Figure 4.  Simulation model of pneumatic impact

    图 5  裂纹表面闭合水平方向变形过程

    Figure 5.  Deformation of crack surface closure in horizontal direction

    图 6  裂纹断面接触应力分布

    Figure 6.  Distribution of contact stress through crack fracture surface

    图 7  重启动模型

    Figure 7.  Restarted model

    图 8  接触应力变化曲线

    Figure 8.  Curves of contact stress

    图 9  COD和CTOD关系

    Figure 9.  Relationship between COD and CTOD

    图 10  应力强度因子对比

    Figure 10.  Comparison of stress intensity factors

    图 11  疲劳试验

    Figure 11.  Ftigue test

    图 12  SG1位置应力幅变化对比

    Figure 12.  Comparison of stress range at SG1

    表  1  气动冲击设备参数

    Table  1.   Parameters of device for pneumatic impact

    参数f/Hzl/mmm/kgAo/mm2
    取值9060.367 2525
    下载: 导出CSV

    表  2  Q345qD材料系数

    Table  2.   Material constant of Q345qD

    参数qλβc
    /(N·mm−1.5
    γ
    取值0.999 7454.736 × 10−80.367 258.0 × 1090.6
    下载: 导出CSV

    表  3  疲劳试验结果

    Table  3.   Fatigue test results

    试件编号预制长度/mm最终长度/mm循环次数/万次
    SP167.279.1463
    SP258.560.0647
    SP366.5未变化581
    SP468.5未变化601
    SP570.6未变化505
    SP670.2未变化540
    下载: 导出CSV
  • [1] 钱冬生. 关于正交异性钢桥面板的疲劳——对英国在加固其塞文桥渡时所作研究的评介[J]. 桥梁建设,1996,26(2): 8-13.

    QIAN Dongsheng. On fatigue of steel orthotropic deck structure: comments on researches for strengthening the severn crossing in UK[J]. Bridge Construction, 1996, 26(2): 8-13.
    [2] 吴冲,刘海燕,张志宏,等. 桥面铺装温度对正交异性钢桥面板疲劳的影响[J]. 同济大学学报(自然科学版),2013,41(8): 1213-1218. doi: 10.3969/j.issn.0253-374x.2013.08.016

    WU Chong, LIU Haiyan, ZHANG Zhihong, et al. Influence of pavements temperature on fatigue life of orthotropic deck of steel bridge[J]. Journal of Tongji University (Natural Science), 2013, 41(8): 1213-1218. doi: 10.3969/j.issn.0253-374x.2013.08.016
    [3] WOLCHUK R. Steel orthotropic decks: developments in the 1990s[J]. Transportation Research Record: Journal of the Transportation Research Board, 1999, 1688(1): 30-37. doi: 10.3141/1688-04
    [4] 吉伯海,袁周致远. 钢箱梁疲劳开裂维护研究现状[J]. 工业建筑,2017,47(5): 1-5,11. doi: 10.13204/j.gyjz201705001

    JI Bohai, YUANZHOU Zhiyuan. State of the art of fatigue cracking maintenance for steel box girder[J]. Industrial Construction, 2017, 47(5): 1-5,11. doi: 10.13204/j.gyjz201705001
    [5] 饶建辉, 吉伯海. 江阴长江公路大桥钢箱梁养护报告: 1999年—2017年[M]. 北京: 人民交通出版社, 2018.
    [6] 王洋,邵旭东,陈杰,等. 重度疲劳开裂钢桥桥面的UHPC加固技术[J]. 土木工程学报,2020,53(11): 92-101,115. doi: 10.15951/j.tmgcxb.2020.11.010

    WANG Yang, SHAO Xudong, CHEN Jie, et al. UHPC-based strengthening technique for significant fatigue cracking steel bridge decks[J]. China Civil Engineering Journal, 2020, 53(11): 92-101,115. doi: 10.15951/j.tmgcxb.2020.11.010
    [7] 吕志林,姜旭,强旭红,等. 高弹模CFRP粘贴法修复钢桥板疲劳裂纹[J]. 建筑钢结构进展,2022,24(5): 92-100.

    LYU Zhilin, JIANG Xu, QIANG Xuhong, et al. High modulus CFRP adhesion method for repairing fatigue cracks in steel bridge plates[J]. Progress in Steel Building Structures, 2022, 24(5): 92-100.
    [8] 李传习,李游,陈卓异,等. 钢箱梁横隔板疲劳开裂原因及补强细节研究[J]. 中国公路学报,2017,30(3): 121-131. doi: 10.3969/j.issn.1001-7372.2017.03.013

    LI Chuanxi, LI You, CHEN Zhuoyi, et al. Fatigue cracking reason and detail dimension of reinforcement about transverse diaphragm of steel box girder[J]. China Journal of Highway and Transport, 2017, 30(3): 121-131. doi: 10.3969/j.issn.1001-7372.2017.03.013
    [9] 张清华,金通,李俊,等. 钢桥面板纵肋与横隔板焊接细节疲劳开裂的加固研究[J]. 西南交通大学学报,2020,55(1): 92-99.

    ZHANG Qinghua, JIN Tong, LI Jun, et al. Study on reinforcement for fatigue cracking of rib-to-diaphragm welded joints of steel bridge deck[J]. Journal of Southwest Jiaotong University, 2020, 55(1): 92-99.
    [10] AL-SALIH H, BENNETT C, MATAMOROS A, et al. Repairing distortion-induced fatigue in steel bridges using a CFRP-steel retrofit[C]//Structures Congress 2020. Saint Louis: American Society of Civil Engineers, 2020: 273-284.
    [11] YAMADA K, ISHIKAWA T, KAKIICHI T, et al. Rehabilitation and improvement of fatigue life of welded joints by ICR Treatment[J]. Advanced Steel Construction, 2015, 11(3): 294-304.
    [12] WANG Q D, JI B H, FU Z Q, et al. Effect of crack-closure treatment on fatigue durability of cracked rib-to-deck welded joints in steel bridge decks[J]. Journal of Central South University, 2019, 26(9): 2554-2568. doi: 10.1007/s11771-019-4194-4
    [13] YUANZHOU Z Y, JI B H, FU Z Q, et al. Fatigue performance of cracked rib-deck welded joint retrofitted by ICR technique[J]. International Journal of Steel Structures, 2016, 16(3): 735-742. doi: 10.1007/s13296-015-0089-x
    [14] ELBER W. The significance of fatigue crack closure[C]//The Seventy-Third Annual Meeting of the American Society for Testing and Materials. Toronto: ASTM International, 1970: 230-242.
    [15] BROWN N, LUKENS K F. Microstrain in polycrystalline metals[J]. Acta Metallurgica, 1961, 9(2): 106-111. doi: 10.1016/0001-6160(61)90053-0
    [16] 凌邦国. 碰撞过程中碰撞力定量计算[J]. 南通工学院学报,2001,17(4): 7-9.

    LING Bangguo. The quantitative calculation of impact in the process of collision[J]. Journal of Nantong Institute of Technology, 2001, 17(4): 7-9.
    [17] YUANZHOU Z Y, JI B H, SUN T, et al. Numerical model of plastic deformation on cracked surface under repeated pneumatic impact[J]. Advances in Materials Science and Engineering, 2018, 2018: 1-9.
    [18] 张倩苑. 冲击频率对低应力多冲碰撞塑性变形的影响研究及建模[D]. 苏州: 苏州大学, 2015.
    [19] YUANZHOU Z Y, JI B H, WANG Q D, et al. Investigation on crack behaviours by closing its surface using impact treatment[J]. Journal of Constructional Steel Research, 2019, 156: 1-8. doi: 10.1016/j.jcsr.2019.01.009
    [20] WELLS A A. Crack opening displacements from elastic-plastic analyses of externally notched tension bars[J]. Engineering Fracture Mechanics, 1969, 1(3): 399-410. doi: 10.1016/0013-7944(69)90001-0
    [21] YUANZHOU Z Y, JI B H, FU Z Q, et al. Fatigue crack retrofitting by closing crack surface[J]. International Journal of Fatigue, 2019, 119: 229-237. doi: 10.1016/j.ijfatigue.2018.10.006
    [22] DUGDALE D S. Yielding of steel sheets containing slits[J]. Journal of the Mechanics and Physics of Solids, 1960, 8(2): 100-104. doi: 10.1016/0022-5096(60)90013-2
    [23] WEI J, ZHAO J H. A two-strain-gage technique for determining modeⅠstress-intensity factor[J]. Theoretical and Applied Fracture Mechanics, 1997, 28(2): 135-14. doi: 10.1016/S0167-8442(97)00038-4
  • 加载中
图(12) / 表(3)
计量
  • 文章访问数:  238
  • HTML全文浏览量:  94
  • PDF下载量:  33
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-05-18
  • 修回日期:  2023-01-09
  • 网络出版日期:  2023-10-12
  • 刊出日期:  2023-01-12

目录

    /

    返回文章
    返回