• ISSN 0258-2724
  • CN 51-1277/U
  • EI Compendex
  • Scopus 收录
  • 全国中文核心期刊
  • 中国科技论文统计源期刊
  • 中国科学引文数据库来源期刊

干湿循环下红层土石混合料强度及变形特性的试验研究

张俊云 张乐 高福洲 唐永吉 何卓岭 王鹰

张俊云, 张乐, 高福洲, 唐永吉, 何卓岭, 王鹰. 干湿循环下红层土石混合料强度及变形特性的试验研究[J]. 西南交通大学学报, 2023, 58(6): 1394-1404. doi: 10.3969/j.issn.0258-2724.20220343
引用本文: 张俊云, 张乐, 高福洲, 唐永吉, 何卓岭, 王鹰. 干湿循环下红层土石混合料强度及变形特性的试验研究[J]. 西南交通大学学报, 2023, 58(6): 1394-1404. doi: 10.3969/j.issn.0258-2724.20220343
ZHANG Junyun, ZHANG Le, GAO Fuzhou, TANG Yongji, HE Zhuoling, WANG Ying. Experimental Study on Strength and Deformation Characteristics of Red-Bed Soil-Rock Mixture Under Wetting-Drying Cycles[J]. Journal of Southwest Jiaotong University, 2023, 58(6): 1394-1404. doi: 10.3969/j.issn.0258-2724.20220343
Citation: ZHANG Junyun, ZHANG Le, GAO Fuzhou, TANG Yongji, HE Zhuoling, WANG Ying. Experimental Study on Strength and Deformation Characteristics of Red-Bed Soil-Rock Mixture Under Wetting-Drying Cycles[J]. Journal of Southwest Jiaotong University, 2023, 58(6): 1394-1404. doi: 10.3969/j.issn.0258-2724.20220343

干湿循环下红层土石混合料强度及变形特性的试验研究

doi: 10.3969/j.issn.0258-2724.20220343
基金项目: 国家自然科学基金(42072313);四川省科技计划(2021YFS0321);四川省交通运输科技项目(2021-A-02)
详细信息
    作者简介:

    张俊云(1974—),男,副教授,博士,研究方向为土力学与基础工程,E-mail:zjy74@126.com

  • 中图分类号: U416.1

Experimental Study on Strength and Deformation Characteristics of Red-Bed Soil-Rock Mixture Under Wetting-Drying Cycles

  • 摘要:

    为研究干湿循环下红层土石混合料的劣化规律,以取自四川盆地的红层土石混合料为研究对象,通过静态崩解试验,探讨不同粒径红层软岩块石的崩解特征;对2组红层土石混合路基填料原始级配缩尺,通过叠环式剪切试验,研究干湿循环次数对红层土石混合料黏聚力、内摩擦角、剪胀率和剪切模量等指标的影响. 研究结果表明:红层软岩块石遇水崩解显著,崩解过程可分为剧烈段、过渡段和稳定段,崩解剧烈段块石含量降低近70%;粒径较大时,块石受结构面影响更强,崩解更彻底;随干湿循环次数的增加,抗剪强度在崩解剧烈段明显降低,过渡段基本不变,稳定段略有回升;块石崩解后,其咬合作用显著降低,表观黏聚力急剧减小,静电引力和固化胶结使黏聚力轻微增大,崩解物间的摩擦和重定向排列使内摩擦角轻微增大;最大粒径和含石量显著降低,法向应力下土石混合料更密实,剪胀率明显降低;骨架-密实结构转变为悬浮-密实结构,剪切模量明显降低;干湿循环下黏聚力和剪胀率劣化更明显,内摩擦角的劣化受块石粒径影响最大,剪切模量的劣化受块石粒径影响最小;路堤填筑前,对红层土石混合料进行2次崩解处理,以削弱其受降雨-蒸发循环作用的不利影响.

     

  • 图 1  红层土石混合料的各粒组土样

    Figure 1.  Soil samples of each particle group of red-bed soil-rock mixture (RB-SRM)

    图 2  红层土石混合料的级配曲线

    Figure 2.  Gradation curves of RB-SRM

    图 3  红层土石混合料的干湿循环途径

    Figure 3.  Wetting-drying cycle method of RB-SRM

    图 4  静态崩解试验装置

    Figure 4.  Apparatus of static disintegration test

    图 5  DHJ50-2型叠环式剪切试验机

    Figure 5.  Apparatus of DHJ50-2 laminated shear test

    图 6  红层软岩块石静态崩解现象

    Figure 6.  Static disintegration of red-bed soft rock blocks

    图 7  干湿循环下崩解物粒组含量变化曲线

    Figure 7.  Curves of the content of disintegrated RB-SRM with different particle sizes under wetting-drying cycles

    图 8  红层土石混合料剪应力-剪切位移曲线

    Figure 8.  Curves of Shear stress-shear displacement of RB-SRM

    图 9  干湿循环下归一化强度劣化曲线

    Figure 9.  Curves of normalized strength under wetting-drying cycles

    图 10  干湿循环下红层土石混合料的强度机理

    Figure 10.  Strength mechanism of RB-SRM under wetting-drying cycles

    图 11  干湿循环下强度指标水平中心梯度分布

    Figure 11.  Horizontal center gradient distribution of strength parameters under wetting-drying cycles

    图 12  干湿循环下剪胀率分布曲线

    Figure 12.  Curves of dilation rate under wetting-drying cycles

    图 13  干湿循环下剪切模量分布曲线

    Figure 13.  Curves of shear modulus under wetting-drying cycles

    图 14  干湿循环下归一化力学效应指标分布曲线

    Figure 14.  Curves of normalized mechanical parameters under wetting-drying cycles

    表  1  岩土体基本物理力学指标

    Table  1.   Basic physical and mechanical parameters of RB-SRM

    类型$\rho $/ (g•cm−3w/%${G_{\text{s}}}$c/kPaφ/(°)${\sigma _{\text{c}}}$/
    MPa
    黏土1.7816.672.7225.3227.07
    粉砂质泥岩2.561.92560.0038.406.83
    下载: 导出CSV

    表  2  干湿循环下红层土石混合料叠环式剪切试验方案

    Table  2.   Laminated shear test scheme of RB-SRM under wetting-drying cycles

    级配试验组n/次法向应力${\sigma _{\text{n}}}$/kPa
    级配 Ⅰ10100,200,400,800
    21100,200,400,800
    32100,200,400,800
    44100,200,400,800
    56100,200,400,800
    级配 Ⅱ60100,200,400,800
    71100,200,400,800
    82100,200,400,800
    94100,200,400,800
    106100,200,400,800
    下载: 导出CSV

    表  3  干湿循环下红层土石混合料的力学效应指标

    Table  3.   Mechanical parameters of RB-SRM under wetting-drying cycles

    类型n/次c/kPa$\varphi $/(°)$\eta $${G_{{\text{0}}{\text{.02}}}}$/MPa
    级配Ⅰ094.8721.24−0.097.78
    115.1723.20−0.156.06
    225.5520.79−0.155.60
    426.8020.97−0.155.29
    627.1723.24−0.156.15
    级配Ⅱ074.8530.56−0.079.02
    163.5820.04−0.126.75
    267.5319.37−0.097.07
    447.8422.93−0.126.60
    651.9624.01−0.117.13
    下载: 导出CSV
  • [1] 杨宗才,张俊云,周德培. 红层泥岩边坡快速风化特性研究[J]. 岩石力学与工程学报,2006,25(2): 275-283.

    YANG Zongcai, ZHANG Junyun, ZHOU Depei. Study on fast weathering characteristics of red bed mudstone slope[J]. Chinese Journal of Rock Mechanics and Engineering, 2006, 25(2): 275-283.
    [2] HE Z L, ZHANG J Y. Compaction quality inspection method of soil-rock filled embankment based on continuous compaction control technology[J]. Advances in Civil Engineering, 2021: 8894042.1-8894042.12.
    [3] XU W J, XU Q, HU R L. Study on the shear strength of soil-rock mixture by large scale direct shear test[J]. International Journal of Rock Mechanics and Mining Sciences, 2011, 48(8): 1235-1247. doi: 10.1016/j.ijrmms.2011.09.018
    [4] 董云,柴贺军. 土石混合料室内大型直剪试验的改进研究[J]. 岩土工程学报,2005,27(11): 1329-1333.

    DONG Yun, CHAI Hejun. Improvement study of lab large-scale direct shear test of rock-soil aggregate mixture[J]. Chinese Journal of Geotechnical Engineering, 2005, 27(11): 1329-1333.
    [5] HE Z L, ZHANG J Y, SUN T. Influence of maximum particle diameter on the mechanical behavior of soil-rock mixtures[J]. Advances in Civil Engineering, 2020, 2020: 8850221.1-8850221.9.
    [6] WEI H Z, XU W J, WEI C F, et al. Influence of water content and shear rate on the mechanical behavior of soil-rock mixtures[J]. Science China Technological Sciences, 2018, 61(8): 1127-1136. doi: 10.1007/s11431-017-9277-5
    [7] 郑明新,徐朋威,杨汶明,等. 江西白垩系泥质粉砂岩崩解试验研究[J]. 地下空间与工程学报,2021,17(2): 374-381,429.

    ZHENG Mingxin, XU Pengwei, YANG Wenming, et al. Experimental study on disintegration of cretaceous argillaceous siltstone in Jiangxi province[J]. Chinese Journal of Underground Space and Engineering, 2021, 17(2): 374-381,429.
    [8] 周翠英,谭祥韶,邓毅梅,等. 特殊软岩软化的微观机制研究[J]. 岩石力学与工程学报,2005,24(3): 394-400.

    ZHOU Cuiying, TAN Xiangshao, DENG Yimei, et al. Research on softening micro-mechanism of special soft rocks[J]. Chinese Journal of Rock Mechanics and Engineering, 2005, 24(3): 394-400.
    [9] 吴道祥,刘宏杰,王国强. 红层软岩崩解性室内试验研究[J]. 岩石力学与工程学报,2010,29(增2): 4173-4179.

    WU Daoxiang, LIU Hongjie, WANG Guoqiang. Laboratory experimental study of slaking characteristics of red-bed soft rock[J]. Chinese Journal of Rock Mechanics and Engineering, 2010, 29(S2): 4173-4179.
    [10] 慕焕东,邓亚虹,李荣建. 干湿循环对地裂缝带黄土抗剪强度影响研究[J]. 工程地质学报,2018,26(5): 1131-1138.

    MU Huandong, DENG Yahong, LI Rongjian. Experimental study on strength characteristics of loess at ground fissures in Xi’an under action of dry and wet cycle[J]. Journal of Engineering geology, 2018, 26(5): 1131-1138.
    [11] 万勇,薛强,吴彦,等. 干湿循环作用下压实黏土力学特性与微观机制研究[J]. 岩土力学,2015,36(10): 2815-2824.

    WAN Yong, XUE Qiang, WU Yan, et al. Mechanical properties and micromechanisms of compacted clay during drying-wetting cycles[J]. Rock and Soil Mechanics, 2015, 36(10): 2815-2824.
    [12] 曾铃,罗锦涛,侯鹏,等. 干湿循环作用下预崩解炭质泥岩裂隙发育规律及强度特性[J]. 中国公路学报,2020,33(9): 1-11.

    ZENG Ling, LUO Jintao, HOU Peng, et al. Crack development and strength characteristics of pre-disintegrated carbonaceous mudstone under dry-wet cycles[J]. China Journal of Highway and Transport, 2020, 33(9): 1-11.
    [13] 唐朝生,施斌. 干湿循环过程中膨胀土的胀缩变形特征[J]. 岩土工程学报,2011,33(9): 1376-1384.

    TANG Chaosheng, SHI Bin. Swelling and shrinkage behavior of expansive soil during wetting-drying cycles[J]. Chinese Journal of Geotechnical Engineering, 2011, 33(9): 1376-1384.
    [14] TABIBNEJAD A, HESHMATI A, SALEHZADEH H, et al. Effect of gradation curve and dry density on collapse deformation behavior of a rockfill material[J]. KSCE Journal of Civil Engineering, 2015, 19(3): 631-640. doi: 10.1007/s12205-013-0682-5
    [15] LI S Q, YAGN Z P, TAIN X, et al. Influencing factors of scale effects in large-scale direct shear tests of soil-rock mixtures based on particle breakage[J]. Transportation Geotechnics, 2021, 31: 100677.1-100677.12.
    [16] LADE P V. Assessment of test data for selection of 3-D failure criterion for sand[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 2006, 30(4): 307-333. doi: 10.1002/nag.471
    [17] 刘新荣,涂义亮,王鹏,等. 基于大型直剪试验的土石混合体颗粒破碎特征研究[J]. 岩土工程学报,2017,39(8): 1425-1434.

    LIU Xinrong, TU Yiliang, WANG Peng, et al. Particle breakage of soil-rock aggregate based on large-scale direct shear tests[J]. Chinese Journal of Geotechnical Engineering, 2017, 39(8): 1425-1434.
    [18] 杨忠平,李进,蒋源文,等. 含石率对土石混合体-基岩界面剪切力学特性的影响[J]. 岩土工程学报,2021,43(8): 1443-1452.

    YANG Zhongping, LI Jin, JIANG Yuanwen, et al. Influences of stone content on shear mechanical properties of soil-rock mixture-bedrock interface[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(8): 1443-1452.
    [19] POTYONDY D O, CUNDALL P A. A bonded-particle model for rock[J]. International Journal of Rock Mechanics and Mining Sciences, 2004, 41(8): 1329-1364. doi: 10.1016/j.ijrmms.2004.09.011
    [20] XU W J, HU L M, GAO W. Random generation of the meso-structure of a soil-rock mixture and its application in the study of the mechanical behavior in a landslide dam[J]. International Journal of Rock Mechanics and Mining Science, 2016, 86: 166-178. doi: 10.1016/j.ijrmms.2016.04.007
    [21] 朱顺然,徐超,丁金华. 土工织物-砂土界面的叠环式剪切试验[J]. 岩土力学,2018,39(5): 1775-1780,1788.

    ZHU Shunran, XU Chao, DING Jinhua. Laminated shear test of geotextile-sand interface[J]. Rock and Soil Mechanics, 2018, 39(5): 1775-1780,1788.
    [22] 江洎洧,程展林,潘家军,等. 基于大型叠环剪切试验的松散土石体强度及变形特性试验研究[J]. 岩石力学与工程学报,2017,36(增1): 3636-3643.

    JIANG Jiwei, CHENG Zhanlin, PAN Jiajun, et al. Experimental study on the stress-strain and strength characteristics of loose rock-soil aggregates based on large-size stacked ring shear test[J]. Chinese Journal of Rock Mechanics and Engineering, 2017, 36(S1): 3636-3643.
    [23] 中华人民共和国住房和城乡建设部. 土工试验方法标准: GB/T 50123—2019[S]. 北京: 中国计划出版社, 2019.
    [24] 刘晓明,颜圣,刘凯,等. 干湿循环作用下红层软岩填料强度特性试验研究[J]. 公路交通科技,2020,37(3): 24-30.

    LIU Xiaoming, YAN Sheng, LIU Kai, et al. Experimental study on strength properties of red bed weak rock filler under dry-wet cycles[J]. Journal of Highway and Transportation Research and Development, 2020, 37(3): 24-30.
    [25] KISHIDA H, UESUGI M. Tests of the interface between sand and steel in the simple shear apparatus[J]. Géotechnique, 1987, 37(1): 45-52.
    [26] 魏厚振,汪稔,胡明鉴,等. 蒋家沟砾石土不同粗粒含量直剪强度特征[J]. 岩土力学,2008,29(1): 48-51,57.

    WEI Houzhen, WANG Ren, HU Mingjian, et al. Strength behaviour of gravelly soil with different coarse-grained contents in Jiangjiagou ravine[J]. Rock and Soil Mechanics, 2008, 29(1): 48-51,57.
    [27] 徐文杰,胡瑞林,曾如意. 水下土石混合体的原位大型水平推剪试验研究[J]. 岩土工程学报,2006,28(7): 814-818.

    XU Wenjie, HU Ruilin, ZENG Ruyi. Research on horizontal push-shear in situ test of subwater soil-rock mixture[J]. Chinese Journal of Geotechnical Engineering, 2006, 28(7): 814-818.
  • 加载中
图(14) / 表(3)
计量
  • 文章访问数:  315
  • HTML全文浏览量:  203
  • PDF下载量:  56
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-05-10
  • 修回日期:  2022-08-25
  • 网络出版日期:  2023-06-21
  • 刊出日期:  2022-10-28

目录

    /

    返回文章
    返回