• ISSN 0258-2724
  • CN 51-1277/U
  • EI Compendex
  • Scopus 收录
  • 全国中文核心期刊
  • 中国科技论文统计源期刊
  • 中国科学引文数据库来源期刊

无砟轨道层间动水压力试验设计

杨荣山 陈健 王元浩 高自远 李莹 曹世豪

杨荣山, 陈健, 王元浩, 高自远, 李莹, 曹世豪. 无砟轨道层间动水压力试验设计[J]. 西南交通大学学报, 2023, 58(2): 414-420. doi: 10.3969/j.issn.0258-2724.20220342
引用本文: 杨荣山, 陈健, 王元浩, 高自远, 李莹, 曹世豪. 无砟轨道层间动水压力试验设计[J]. 西南交通大学学报, 2023, 58(2): 414-420. doi: 10.3969/j.issn.0258-2724.20220342
YANG Rongshan, CHEN Jian, WANG Yuanhao, GAO Ziyuan, LI Ying, CAO Shihao. Experimental Design of Hydrodynamic Pressure in Ballastless Track Crack[J]. Journal of Southwest Jiaotong University, 2023, 58(2): 414-420. doi: 10.3969/j.issn.0258-2724.20220342
Citation: YANG Rongshan, CHEN Jian, WANG Yuanhao, GAO Ziyuan, LI Ying, CAO Shihao. Experimental Design of Hydrodynamic Pressure in Ballastless Track Crack[J]. Journal of Southwest Jiaotong University, 2023, 58(2): 414-420. doi: 10.3969/j.issn.0258-2724.20220342

无砟轨道层间动水压力试验设计

doi: 10.3969/j.issn.0258-2724.20220342
基金项目: 国家自然科学基金(51978584,52272442,51908197)
详细信息
    作者简介:

    杨荣山(1975—),男,教授,博士,研究方向为轨道结构与轨道动力学,E-mail:yrs@home.swjtu.edu.cn

  • 中图分类号: U213.244

Experimental Design of Hydrodynamic Pressure in Ballastless Track Crack

  • 摘要:

    无砟轨道层间界面是其薄弱环节,雨水侵入会加剧层间损伤. 为研究无砟轨道层间离缝内动水压力分布规律,建立无砟轨道层间脱空平面计算模型,分析脱空深度与开口量对脱空区域垂向位移的影响,确定与现场实测接近的脱空深度;并设计无砟轨道层间脱空模拟装置,验证高频荷载作用下该装置的有效性;基于此装置,开展层间离缝动水压力试验,研究荷载频率、离缝开口量对动水压力的影响. 结果表明:当荷载频率为25 Hz,幅值为1.1 kN时,层间脱空模拟装置板端最大垂向相对位移与现场测试结果吻合,表明该装置能模拟层间动水;在高频荷载作用下,层间离缝内水压力正负交替变化,动水压力沿离缝深度方向增大,在离缝尖端水压力最大为15.794 kPa;荷载频率从15 Hz提高至25 Hz时,最大动水压力从1.646 kPa增长到15.794 kPa,约增大10倍;开口量从8 mm增加至14 mm时,最大动水压力从8.320 kPa增大到15.794 kPa,约增大2倍.

     

  • 图 1  无砟轨道层间脱空网格划分

    Figure 1.  Meshing for interlayer debonding in ballastless track

    图 2  不同脱空深度下脱空区域变形特性

    Figure 2.  Deformation characteristic under different debonding depths

    图 3  不同开口量下脱空区域变形特性

    Figure 3.  Deformation characteristic under different crack openings

    图 4  层间脱空模拟装置示意

    Figure 4.  Schematic of the interlayer debonding simulation device

    图 5  不同荷载作用下结构上板垂向相对位移

    Figure 5.  Vertical relative displacements of the upper plate under different loads

    图 6  试验结果与理论计算结果对比

    Figure 6.  Comparison of results between experimental and theoretical calculation

    图 7  测点位置分布示意

    Figure 7.  Location schematic of measuring points

    图 8  不同测点动水压力时程曲线

    Figure 8.  Time history curves of hydrodynamic pressure at different measuring points

    图 9  不同测点处动水压力最值

    Figure 9.  Maximum values of hydrodynamic pressure at different measuring points

    图 10  不同加载频率下测点 ① 的动水压力时程曲线

    Figure 10.  Time history curves of hydrodynamic pressure at measuring point ① with different loading frequencies

    图 11  加载频率对动水压力的影响

    Figure 11.  Influence of loading frequency on hydrodynamic pressure

    图 12  不同开口量下测点 ① 的动水压力时程曲线

    Figure 12.  Time history curves of hydrodynamic pressure at measuring point ① with different crack openings

    图 13  离缝开口量对动水压力的影响

    Figure 13.  Influence of crack opening on hydrodynamic pressure

    图 14  不同测点动水压力理论计算结果与试验结果对比

    Figure 14.  Comparison of results between theoretical calculation and experiment of hydrodynamic pressure at different measuring points

    表  1  材料参数

    Table  1.   Material parameters

    部件强度弹性模量/GPa泊松比密度/(kg·m−3
    轨枕C6035.50.202500
    道床板C4032.50.202450
    支承层C1522.00.182400
    下载: 导出CSV

    表  2  试验工况

    Table  2.   Test working conditions

    试验工况开口量/mm加载频率/Hz目的
    1815加载频率对动水压力的影响
    2825
    3825开口量对动水压力的影响
    41425
    下载: 导出CSV
  • [1] 赵国堂. 高速铁路无碴轨道结构[M]. 北京: 中国铁道出版社, 2006.
    [2] 王森荣,杨荣山,刘学毅,等. 无砟轨道裂缝产生原因与整治措施[J]. 铁道建筑,2007,47(9): 76-79. doi: 10.3969/j.issn.1003-1995.2007.09.029

    WANG Senrong, YANG Rongshan, LIU Xueyi, et al. Causes and treatment measures of cracks in ballastless track[J]. Railway Engineering, 2007, 47(9): 76-79. doi: 10.3969/j.issn.1003-1995.2007.09.029
    [3] 刘钰,赵国堂. CRTSⅡ型板式无砟轨道结构层间早期离缝研究[J]. 中国铁道科学,2013,34(4): 1-7. doi: 10.3969/j.issn.1001-4632.2013.04.01

    LIU Yu, ZHAO Guotang. Analysis of early gap between layers of CRTSⅡ slab ballastless track structure[J]. China Railway Science, 2013, 34(4): 1-7. doi: 10.3969/j.issn.1001-4632.2013.04.01
    [4] 邵丕彦,李海燕,吴韶亮,等. CRTSⅠ型轨道板温度变形及与砂浆垫层间离缝的测试研究[J]. 中国铁道科学,2013,34(2): 18-22. doi: 10.3969/j.issn.1001-4632.2013.02.04

    SHAO Piyan, LI Haiyan, WU Shaoliang, et al. Measurement and research on temperature warping of CRTSⅠ track slab and crack between track slab and cement asphalt mortar cushion[J]. China Railway Science, 2013, 34(2): 18-22. doi: 10.3969/j.issn.1001-4632.2013.02.04
    [5] 曹世豪,杨荣山,刘学毅,等. 无砟轨道层间裂纹内动水压力特性分析[J]. 西南交通大学学报,2016,51(1): 36-42. doi: 10.3969/j.issn.0258-2724.2016.01.006

    CAO Shihao, YANG Rongshan, LIU Xueyi, et al. Analysis of water pressure in ballastless track crack[J]. Journal of Southwest Jiaotong University, 2016, 51(1): 36-42. doi: 10.3969/j.issn.0258-2724.2016.01.006
    [6] 杨荣山,曹世豪,谢露,等. 列车荷载与水耦合作用下的无砟轨道水力劈裂机理分析[J]. 铁道学报,2017,39(6): 95-103. doi: 10.3969/j.issn.1001-8360.2017.06.013

    YANG Rongshan, CAO Shihao, XIE Lu, et al. Hydraulic fracturing mechanism of slab track under coupling effect of train load and water[J]. Journal of the China Railway Society, 2017, 39(6): 95-103. doi: 10.3969/j.issn.1001-8360.2017.06.013
    [7] 杨荣山,胡猛,孔晓钰,等. 双块式无砟轨道枕边裂缝水力伤损特性[J]. 铁道学报,2022,44(2): 81-89. doi: 10.3969/j.issn.1001-8360.2022.02.011

    YANG Rongshan, HU Meng, KONG Xiaoyu, et al. Hydraulic damage characteristics of cracks adjacent to sleepers of twinblock ballastless track[J]. Journal of the China Railway Society, 2022, 44(2): 81-89. doi: 10.3969/j.issn.1001-8360.2022.02.011
    [8] 杨荣山,李莹,许钊荣,等. 多雨地区双块式无砟轨道湿态混凝土力学性能[J]. 西南交通大学学报,2022,57(4): 840-847. doi: 10.3969/j.issn.0258-2724.20210440

    YANG Rongshan, LI Ying, XU ZhaoRong, et al. Mechanical properties of wet concrete inside double-block ballastless tracks in rainy areas[J]. Journal of Southwest Jiaotong University, 2022, 57(4): 840-847. doi: 10.3969/j.issn.0258-2724.20210440
    [9] 徐桂弘,杨荣山,刘学毅. 荷载幅值对无砟轨道结构裂纹水压力影响[J]. 铁道工程学报,2015,32(1): 32-37. doi: 10.3969/j.issn.1006-2106.2015.01.007

    XU Guihong, YANG Rongshan, LIU Xueyi. Impact of load amplitude on the water pressure of non-ballasted track structure[J]. Journal of Railway Engineering Society, 2015, 32(1): 32-37. doi: 10.3969/j.issn.1006-2106.2015.01.007
    [10] 曹世豪,杨荣山,刘学毅,等. 列车荷载作用下无砟轨道层间裂缝内水压力分布[J]. 中国铁道科学,2016,37(3): 9-15. doi: 10.3969/j.issn.1001-4632.2016.03.002

    CAO Shihao, YANG Rongshan, LIU Xueyi, et al. Water pressure distribution in interlayer crack of ballastless track under train load[J]. China Railway Science, 2016, 37(3): 9-15. doi: 10.3969/j.issn.1001-4632.2016.03.002
    [11] 曹世豪. 列车荷载下无砟轨道层间裂缝内水力分布特性研究[D]. 成都: 西南交通大学, 2017.
    [12] 赵国堂,高亮,赵磊,等. CRTSⅡ型板式无砟轨道板下离缝动力影响分析及运营评估[J]. 铁道学报,2017,39(1): 1-10.

    ZHAO Guotang, GAO Liang, ZHAO Lei, et al. Analysis of dynamic effect of gap under CRTSⅡ track slab and operation evaluation[J]. Journal of the China Railway Society, 2017, 39(1): 1-10.
    [13] 练兴平,杨晓刚,汪杰,等. 成灌线某晃车地段CRTS Ⅲ型板式无砟轨道层间离缝整治研究[J]. 铁道标准设计,2018,62(11): 34-38.

    LIAN Xingping, YANG Xiaogang, WANG Jie, et al. Research on the connection damage remediation of CRTS Ⅲ ballastless track in train shaking area of Chengdu to Dujiangyan high-speed railway[J]. Railway Standard Design, 2018, 62(11): 34-38.
  • 加载中
图(14) / 表(2)
计量
  • 文章访问数:  382
  • HTML全文浏览量:  122
  • PDF下载量:  32
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-05-11
  • 修回日期:  2022-09-02
  • 网络出版日期:  2023-02-18
  • 刊出日期:  2022-09-22

目录

    /

    返回文章
    返回