• ISSN 0258-2724
  • CN 51-1277/U
  • EI Compendex
  • Scopus 收录
  • 全国中文核心期刊
  • 中国科技论文统计源期刊
  • 中国科学引文数据库来源期刊

FRP约束UHPC圆形短柱轴心受压性能研究

马恺泽 韩潇 何腾伟 白景柱

马恺泽, 韩潇, 何腾伟, 白景柱. FRP约束UHPC圆形短柱轴心受压性能研究[J]. 西南交通大学学报. doi: 10.3969/j.issn.0258-2724.20220332
引用本文: 马恺泽, 韩潇, 何腾伟, 白景柱. FRP约束UHPC圆形短柱轴心受压性能研究[J]. 西南交通大学学报. doi: 10.3969/j.issn.0258-2724.20220332
MA Kaize, HAN Xiao, HE Tengwei, BAI Jingzhu. Investigation of FRP-Confined UHPC Circular Stub Columns under Axial Compression[J]. Journal of Southwest Jiaotong University. doi: 10.3969/j.issn.0258-2724.20220332
Citation: MA Kaize, HAN Xiao, HE Tengwei, BAI Jingzhu. Investigation of FRP-Confined UHPC Circular Stub Columns under Axial Compression[J]. Journal of Southwest Jiaotong University. doi: 10.3969/j.issn.0258-2724.20220332

FRP约束UHPC圆形短柱轴心受压性能研究

doi: 10.3969/j.issn.0258-2724.20220332
基金项目: 国家自然科学基金(51868073)
详细信息
    作者简介:

    马恺泽(1981—),男,副教授,博士,研究方向为超高性能混凝土结构,E-mail:makaize@chd.edu.cn

  • 中图分类号: TU375

Investigation of FRP-Confined UHPC Circular Stub Columns under Axial Compression

  • 摘要:

    为研究纤维增强复合材料(FRP) 种类、FRP层数和钢纤维体积掺量对超高性能混凝土(UHPC)圆形短柱轴压性能的影响,对21个FRP约束UHPC圆形短柱进行轴心受压试验,分析试件的失效破坏特征及受力机理,研究各参数对试件极限强度和极限应变的影响规律. 研究结果表明:FRP层数的增加可以提高UHPC圆形短柱的极限强度,试件C12、C22、C32的极限强度比C11、C21、C31分别提高了17.8%、25.4%、23.4%;钢纤维体积掺量的增加可以使UHPC圆形短柱的极限强度和极限应变得到提高,并可以在一定程度上改善试件的脆性,试件C31的极限强度和极限应变比试件C21分别提高了2.9%和15.1%,比试件C11分别提高了4.7%和50%;在FRP层数和钢纤维体积掺量相同的情况下,碳纤维增强复合材料(CFRP)对圆形短柱极限强度的改善程度明显优于玻璃纤维增强复合材料(GFRP),试件C11、C12和C13的极限强度比试件G11、G12和G13的分别提高了9.7%、7.8%和7.2%;考虑钢纤维的约束影响,提出FRP约束UHPC圆形短柱的抗压强度和极限应变的计算模型,并进一步给出FRP约束UHPC的本构模型.

     

  • 图 1  试验加载装置

    Figure 1.  Test loading device

    图 2  应变片的分布

    Figure 2.  Distribution of strain gauges

    图 3  试件破坏形态

    Figure 3.  Failure mode of specimens

    图 4  FRP约束UHPC的荷载-应变曲线

    Figure 4.  Load-strain curves of FRP-confined UHPC

    图 5  FRP约束UHPC圆形短柱受力示意

    Figure 5.  Force of FRP-confined UHPC circular stub column

    图 6  约束力计算模型

    Figure 6.  Calculation model of constraining force

    图 7  拟合曲线

    Figure 7.  Fitting curve of peak strain

    图 9  应力-应变曲线对比

    Figure 9.  Comparison of stress-strain curves

    表  1  试件编号及试验结果

    Table  1.   Specimen numbering and experiment results

    试件
    编号
    钢纤维掺量/%FRP层数/层N/kNɛy试件
    编号
    钢纤维掺量/%FRP层数/层N/kNɛy
    P11805.00.0024G32321392.20.0088
    P22874.20.0029G33331511.90.0120
    P33917.30.0029G34341657.50.0148
    G11111197.10.0044C11111312.90.0056
    G12121318.10.0063C12121546.40.0087
    G13131409.60.0082C13131787.30.0138
    G14141532.80.0106C21211336.00.0073
    G21211239.30.0061C22221675.70.0125
    G22221351.60.0080C23231931.90.0176
    G23231469.50.0109C31311375.40.0084
    G24241620.40.0136C32321696.80.0145
    G31311283.10.0075C33332065.10.0210
    下载: 导出CSV

    表  2  UHPC的配合比

    Table  2.   Mix proportion of UHPC kg/m3

    水胶比水泥硅灰石英砂粉煤灰
    0.151.000.321.460.30
    下载: 导出CSV

    表  3  FRP的性能指标

    Table  3.   Performance index of FRP

    型号抗拉强度/MPa弹性模量/GPa伸长率/%
    GFRP23811142.7
    CFRP39612401.8
    下载: 导出CSV

    表  4  试件极限强度和极限应变计算值与试验值对比

    Table  4.   Comparison between calculated and test results of ultimate strength and ultimate strain of specimens

    参考文献试件编号Vf/%fcc/MPaɛccfccc/MPaɛcccfccc/fccɛccc/ɛcc
    文献[10] 2130.70.0078175.20.00821.3401.047
    2180.80.0116217.20.01551.2011.332
    2148.80.0073185.30.00971.2451.325
    2162.30.0094211.10.01021.3011.085
    2156.50.0065172.70.00781.1031.202
    2191.40.0104211.80.01441.1071.382
    文献[19] 2226.60.0086264.80.00751.1680.874
    2273.50.0106281.80.00901.0300.853
    2298.90.0115298.20.01070.9980.934
    2254.10.0068267.40.00771.0521.138
    2372.20.0105319.70.01330.8591.263
    文献[20]UHPC-1C1168.00.0068178.10.00571.0600.836
    UHPC-2C1180.80.0073194.20.00711.0740.970
    UHPC-3G1171.50.0076195.00.00721.1370.942
    UHPC-5G1182.00.0073214.50.00941.1781.291
    下载: 导出CSV
  • [1] MONALDO E, NERILLI F, VAIRO G. Basalt-based fiber-reinforced materials and structural applications in civil engineering[J]. Composite Structures, 2019, 214: 246-263. doi: 10.1016/j.compstruct.2019.02.002
    [2] 闫清峰,张纪刚. 纤维增强复合材料在土木工程中的应用与发展[J]. 科学技术与工程,2021,21(36): 15314-15322. doi: 10.3969/j.issn.1671-1815.2021.36.003

    YAN Qingfeng, ZHANG Jigang. Applications and development of fiber reinforced polymer in civil engineering[J]. Science Technology and Engineering, 2021, 21(36): 15314-15322. doi: 10.3969/j.issn.1671-1815.2021.36.003
    [3] 王晖. 超高性能混凝土(UHPC)研究综述[J]. 混凝土与水泥制品,2022(4): 25-28.

    WANG Hui. Review of research on ultra-high performance concrete[J]. China Concrete and Cement Products, 2022(4): 25-28.
    [4] 张云升,张文华,陈振宇. 综论超高性能混凝土:设计制备·微观结构·力学与耐久性·工程应用[J]. 材料导报,2017,31(23): 1-16. doi: 10.11896/j.issn.1005-023X.2017.023.001

    ZHANG Yunsheng, ZHANG Wenhua, CHEN Zhenyu. A complete review of ultra-high performance concrete: design and preparation, microstructure, mechanics and durability, engineering applications[J]. Materials Review, 2017, 31(23): 1-16. doi: 10.11896/j.issn.1005-023X.2017.023.001
    [5] 梁旭宇,池寅,曾彦钦,等. GFRP管约束超高性能混凝土单轴受压应力-应变关系试验研究[J]. 武汉大学学报(工学版),2020,53(6): 498-506.

    LIANG Xuyu, CHI Yin, ZENG Yanqin, et al. Experimental studies on stress-strain relationship of ultra-high performance concrete confined by GFRP tube under uniaxial compression[J]. Engineering Journal of Wuhan University, 2020, 53(6): 498-506.
    [6] LAM L, HUANG L, XIE J H, et al. Compressive behavior of ultra-high performance concrete confined with FRP[J]. Composite Structures, 2021, 274: 114321. doi: 10.1016/j.compstruct.2021.114321
    [7] GULER S. Axial behavior of FRP-wrapped circular ultra-high performance concrete specimens[J]. Structural Engineering and Mechanics, 2014, 50(6): 709-722. doi: 10.12989/sem.2014.50.6.709
    [8] WANG W Q, WU C Q, LIU Z X, et al. Compressive behavior of ultra-high performance fiber-reinforced concrete (UHPFRC) confined with FRP[J]. Composite Structures, 2018, 204: 419-437. doi: 10.1016/j.compstruct.2018.07.102
    [9] 邓宗才,刘少新. FRP管约束超高性能混凝土的试验及理论研究[J]. 应用基础与工程科学学报,2016,24(4): 792-803.

    DENG Zongcai, LIU Shaoxin. Test and modeling of ultra-high performance concrete confined by fiber reinforced polymer tube[J]. Journal of Basic Science and Engineering, 2016, 24(4): 792-803.
    [10] 邓宗才,王义超. FRP约束超高性能混凝土圆柱轴压本构模型[J]. 西南交通大学学报,2015,50(4): 641-647. doi: 10.3969/j.issn.0258-2724.2015.04.011

    DENG Zongcai, WANG Yichao. Axial compression stress-strain model for UHPC cylinders confined by FRP[J]. Journal of Southwest Jiaotong University, 2015, 50(4): 641-647. doi: 10.3969/j.issn.0258-2724.2015.04.011
    [11] 黄美珍. 基于细观力学方法的超高性能混凝土轴压本构模型研究[D]. 福州: 福州大学, 2019.
    [12] 田会文,周臻,陆纪平,等. 纤维增强树脂复合材料约束超高性能混凝土轴压性能的细观数值模拟[J]. 复合材料学报,2020,37(7): 1629-1638.

    TIAN Huiwen, ZHOU Zhen, LU Jiping, et al. Meso-scale numerical simulation of axial compression performance of fiber reinforced polymer composite-confined ultra-high performance concrete[J]. Acta Materiae Compositae Sinica, 2020, 37(7): 1629-1638.
    [13] 中华人民共和国建设部. 普通混凝土拌合物性能试验方法标准: GB/T 50080—2002[S]. 北京: 中国建筑工业出版社, 2003.
    [14] 曹玉贵,李龙龙,谯理格. FRP约束橡胶混凝土的轴心受压承载力分析[J]. 江苏大学学报(自然科学版),2021,42(5): 616-620.

    CAO Yugui, LI Longlong, QIAO Lige. Analysis of axial compressive bearing capacity of FRP confined rubber concrete[J]. Journal of Jiangsu University (Natural Science Edition), 2021, 42(5): 616-620.
    [15] 李稳. FRP-混凝土界面破坏行为的断裂力学分析[D]. 广州: 华南理工大学, 2020.
    [16] TANG W S, LIU Z Z, LU Y Y, et al. Hybrid confinement mechanism of large-small rupture strain FRP on concrete cylinder[J]. Journal of Building Engineering, 2022, 51: 104335.1-104335.20.
    [17] HOSINIEH M M, AOUDE H, COOK W D, et al. Behavior of ultra-high performance fiber reinforced concrete columns under pure axial loading[J]. Engineering Structures, 2015, 99: 388-401. doi: 10.1016/j.engstruct.2015.05.009
    [18] ZOHREVAND P, MIRMIRAN A. Stress-strain model of ultrahigh performance concrete confined by fiber-reinforced polymers[J]. Journal of Materials in Civil Engineering, 2013, 25(12): 1822-1829. doi: 10.1061/(ASCE)MT.1943-5533.0000769
    [19] 安凯旋,王旭月,刘中宪,等. 纤维布约束超高性能混凝土短柱轴压性能[J]. 建筑结构,2021,51(11): 129-135.

    AN Kaixuan, WANG Xuyue, LIU Zhongxian, et al. Study on axial compression performance research on UHPC short columns confined by fiber reinforced polymer[J]. Building Structure, 2021, 51(11): 129-135.
    [20] MANDER J B, PRIESTLEY M J N, PARK R. Theoretical stress-strain model for confined concrete[J]. Journal of Structural Engineering, 1988, 114(8): 1804-1826. doi: 10.1061/(ASCE)0733-9445(1988)114:8(1804)
    [21] LAM L, TENG J G. Design-oriented stress-strain model for FRP-confined concrete[J]. Construction and Building Materials, 2003, 17(6/7): 471-489.
  • 加载中
图(8) / 表(4)
计量
  • 文章访问数:  63
  • HTML全文浏览量:  26
  • PDF下载量:  7
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-05-17
  • 修回日期:  2022-07-26
  • 网络出版日期:  2023-11-22

目录

    /

    返回文章
    返回