• ISSN 0258-2724
  • CN 51-1277/U
  • EI Compendex
  • Scopus 收录
  • 全国中文核心期刊
  • 中国科技论文统计源期刊
  • 中国科学引文数据库来源期刊

融入公交车与自动驾驶车队的异质交通流模型

梁军 耿浩然 陈龙 于滨 鲁光泉

梁军, 耿浩然, 陈龙, 于滨, 鲁光泉. 融入公交车与自动驾驶车队的异质交通流模型[J]. 西南交通大学学报, 2023, 58(5): 1090-1099. doi: 10.3969/j.issn.0258-2724.20220313
引用本文: 梁军, 耿浩然, 陈龙, 于滨, 鲁光泉. 融入公交车与自动驾驶车队的异质交通流模型[J]. 西南交通大学学报, 2023, 58(5): 1090-1099. doi: 10.3969/j.issn.0258-2724.20220313
LIANG Jun, GENG Haoran, CHEN Long, YU Bin, LU Guangquan. Integrated Heterogeneous Traffic Flow Model of Bus and Autonomous Vehicle Platoon[J]. Journal of Southwest Jiaotong University, 2023, 58(5): 1090-1099. doi: 10.3969/j.issn.0258-2724.20220313
Citation: LIANG Jun, GENG Haoran, CHEN Long, YU Bin, LU Guangquan. Integrated Heterogeneous Traffic Flow Model of Bus and Autonomous Vehicle Platoon[J]. Journal of Southwest Jiaotong University, 2023, 58(5): 1090-1099. doi: 10.3969/j.issn.0258-2724.20220313

融入公交车与自动驾驶车队的异质交通流模型

doi: 10.3969/j.issn.0258-2724.20220313
基金项目: 国家重点研发计划(2018YFB0105003);国家自然科学基金(51875225)
详细信息
    作者简介:

    梁军(1976—),男,教授,博士,研究方向为智能车辆与智能交通,E-mail:liangjun@ujs.edu.cn

  • 中图分类号: U491.25

Integrated Heterogeneous Traffic Flow Model of Bus and Autonomous Vehicle Platoon

  • 摘要:

    为研究网联自动驾驶车(connected autonomous vehicle, CAV)和人工驾驶车(human-pilot vehicle, HPV)所组成的异质交通流特性及公交车驾驶行为对环境的影响,首先,分析异质交通流中的4种跟驰模式:人工驾驶小汽车跟驰、人工驾驶公交车跟驰、自适应巡航控制(adaptive cruise control, ACC)跟驰和协同自适应巡航控制(cooperative adaptive cruise control, CACC)跟驰;接着,基于各跟驰模型的特点,构建车辆跟驰和换道的元胞自动机模型,综合考虑CAV车队特性、驾驶员与CAV各自反应时间特性以及HPV加塞特性,并利用跟驰模式判断参数融合不同跟驰模式特性,实现统一的模型表达;最后,仿真分析不同CAV渗透率下CAV排队强度及公交车换道行为对交通流的影响. 结果表明:在一定的CAV渗透率下,促使CAV形成队列比单纯提高CAV渗透率更能有效提升道路通行效率;适量的公交换道有助于充分利用道路通行能力,过多的公交换道则会妨碍正常交通,公交换道对交通流造成的通行效率衰减随CAV渗透率的增大而减小;同步流状态下,人工驾驶小汽车执行率与道路通行效率呈负相关关系;而在堵塞流状态下,人工驾驶小汽车执行率对通行效率影响甚微.

     

  • 图 1  跟驰类型示意

    Figure 1.  Schematic of car following type

    图 2  小汽车、公交车安全距离

    Figure 2.  Safe distances for cars and buses

    图 3  换道过程

    Figure 3.  Lane-changing process

    图 4  CAV换道场景

    Figure 4.  CAV lane-changing scenario

    图 5  加塞场景示意

    Figure 5.  Cutting-in scenario

    图 6  不同CAV渗透率与排队强度下的时空图

    Figure 6.  Spatio-temporal diagram with different CAV permeabilities and queuing intensities

    图 7  公交车换道流程

    Figure 7.  Process of bus lane change

    图 8  公交车换道次数-交通流量示意

    Figure 8.  Bus lane-changing times versus traffic flow

    图 9  不同CAV渗透率下交通流均值及标准差

    Figure 9.  Mean and standard deviation of traffic flow under different CAV permeabilities

    图 10  交通流量与公交车换道次数相关性热图

    Figure 10.  Heat map of correlation between traffic flow and number of bus lane-changing times

    图 11  不同驾驶员换道意向下车流平均速度

    Figure 11.  Average traffic speed under lane-changing intentions from different drivers

    图 12  HPV车辆遭遇公交车换道决策过程

    Figure 12.  Decision-making process of HPV vehicle encountering bus lane change

    图 13  不同CAV渗透率下4种HPV执行率对应的密度-车辆平均延误

    Figure 13.  Density versus vehicle average delay with four types of HPV execution rates at different CAV permeabilities

    表  1  参数说明

    Table  1.   Parameter descriptions

    参数符号参数说明
    $ {\alpha _n} $  ${\alpha _n} \in \left\{ {0,1} \right\}$,1 表示 ACC 跟驰模式,0 表示非ACC 跟驰模式
    $ {\beta _n} $  $ {\beta _n} \in \left\{ {0,1} \right\}$,1 表示 CACC 跟驰模式,0 表示非 CACC 跟驰模式
    $ {\gamma _n} $  $ {\gamma _n} \in \left\{ {0,1} \right\}$,1 表示 HPVc 跟驰模式,0 表示非HPVc 跟驰模式跟驰
    Ωn  ${\varOmega _n} \in \left\{ {0,1} \right\}$,1 表示 HPVb 跟驰模式,0 表示非HPVb 跟驰模式跟驰
    $ {v_n}\left( t \right) $  时刻 t 车辆 n 的速度,n+1为前车,n−1为后车
    $ {x_n}\left( t \right) $  时刻 t 车辆 n 的位置,n+1为前车,n−1为后车
    ${ v_{ {\rm{B} },n + 1}( t)}$  时刻 t 车辆 n 在车道 B 前车速度
    $ {d_n} $  车辆 n 与前车车间距
    $ d_n^{{\text{safe}}} $  车辆 n 的安全车距
    $ {a_n} $  车辆 n 的加速度
    $ \Delta t $  仿真实验时间步长
    $ {\tau _j} $  人类驾驶员与自动驾驶车的反应时间,$j\in ${HPV,CAV}
    $v_n^{{\rm{\max }}}$  车辆 n 的最大速度
    $ {b_i} $  $ i \in \{ {\text{car,bus} }\}$,依次表示小汽车(car)与公交车(bus)的最大减速度
    ${m_{\rm{A} } } ( {m_{\rm{B} } }) $  在 CAV 通信范围内车道 A (车道 B)能获取信息的前方车辆数
    ${m_{{\rm{\max }}} }$  CAV 通信范围内可获取间隔为安全距离的最大前方车辆数$ ({m_{{\rm{A}}}},m_{\rm{B}} \leqslant {m_{\max }}) $
    ${\tilde d_{{\rm{B}},n} }$  车道 B 上车辆 n 对应相同位置车头与前车车距
    $ {d_{{\rm{B}},n + m}} $  在车道 B 上车辆 n 前方第 m 辆车与其前车间的车距
    $ C\left( x \right) $  $ x$位置所在元胞状态,0 表示有车,1 表示无车
    $ {l_n} $  车辆 n 的长度
    ${l_{\rm{c}}}$  元胞长度
    $ O $  CAV 排队强度
    $ {q_n} $  车辆 n 占用元胞数
    ${p_{ {\text{random} } } }$  随机慢化概率
    ${p_{\rm{g}}}$  车辆换道产生加塞情况概率
    下载: 导出CSV

    表  2  仿真参数设置

    Table  2.   Simulation parameter setting

    参数符号仿真值
    $a_n/(元胞{\text{•}}时间步^{-2})$$ {a_{{\text{car}}}} = 2 $,$ {a_{{\text{bus}}}} = 1 $
    $ {\tau _{{\text{HPV}}}}/{\rm{s}} $1.5
    ${\tau _{ {\text{CAV} } } } /{\rm{s}}$0.5
    ${b_{ {\text{car} } } } $/(元胞·时间步−2−4
    $ {b_{{\text{bus}}}} $/(元胞·时间步−2−3
    $ {m_{\max }} $50
    $ {p_{{\text{random}}}} $,${p_{ {\rm{g} } } }$0.5
    下载: 导出CSV
  • [1] 徐志刚,李金龙,赵祥模,等. 智能公路发展现状与关键技术[J]. 中国公路学报,2019,32(8): 1-24. doi: 10.19721/j.cnki.1001-7372.2019.08.001

    XU Zhigang, LI Jinlong, ZHAO Xiangmo, et al. A review on intelligent road and its related key technologies[J]. China Journal of Highway and Transport, 2019, 32(8): 1-24. doi: 10.19721/j.cnki.1001-7372.2019.08.001
    [2] 李克强,戴一凡,李升波,等. 智能网联汽车(ICV)技术的发展现状及趋势[J]. 汽车安全与节能学报,2017,8(1): 1-14. doi: 10.3969/j.issn.1674-8484.2017.01.001

    LI Keqiang, DAI Yifan, LI Shengbo, et al. State-of-the-art and technical trends of intelligent and connected vehicles[J]. Journal of Automotive Safety and Energy, 2017, 8(1): 1-14. doi: 10.3969/j.issn.1674-8484.2017.01.001
    [3] DONG C Q, CHEN X W, DONG H B, et al. Research on intelligent vehicle infrastructure cooperative system based on Zigbee[C]//The 5th International Conference on Transportation Information and Safety (ICTIS). Liverpool: IEEE, 2019: 1337-1343.
    [4] RIOS-TORRES J, MALIKOPOULOS A A. A survey on the coordination of connected and automated vehicles at intersections and merging at highway on-ramps[J]. IEEE Transactions on Intelligent Transportation Systems, 2016, 18(5): 1066-1077.
    [5] LEE H, SONG T, YOON Y, et al. Development of a longitudinal control algorithm based on V2V communication for ensuring takeover time of autonomous vehicle[J]. Journal of Auto-Vehicle Safety Association, 2020, 12(1): 15-25.
    [6] WANG W S, LIANG J, PAN C F, et al. NLS based hierarchical anti-disturbance controller for vehicle platoons with time-varying parameter uncertainties[J]. IEEE Transactions on Intelligent Transportation Systems, 2022, 23(11): 21062-21073. doi: 10.1109/TITS.2022.3178731
    [7] FAKHRMOOSAVI F, SAEDI R, ZOCKAIE A, et al. Impacts of connected and autonomous vehicles on traffic flow with heterogeneous drivers spatially distributed over large-scale networks[J]. Transportation Research Record: Journal of The Transportation Research Board, 2020, 2674(10): 817-830. doi: 10.1177/0361198120940997
    [8] TALEBPOUR A, MAHMASSANI H S, HAMDAR S H. Modeling lane-changing behavior in a connected environment: a game theory approach[J]. Transportation Research Procedia, 2015, 7: 420-440. doi: 10.1016/j.trpro.2015.06.022
    [9] SALA M, SORIGUERA F. Capacity of a freeway lane with platoons of autonomous vehicles mixed with regular traffic[J]. Transportation Research Part B: Methodological, 2021, 147: 116-131. doi: 10.1016/j.trb.2021.03.010
    [10] ZHOU Y J, ZHU H B, GUO M M, et al. Impact of CACC vehicles’ cooperative driving strategy on mixed four-lane highway traffic flow[J]. Physica A: Statistical Mechanics and Its Applications, 2020, 540: 122721.1-122721.13.
    [11] LI S K, LIU R H, YANG L X, et al. Robust dynamic bus controls considering delay disturbances and passenger demand uncertainty[J]. Transportation Research Part B: Methodological, 2019, 123: 88-109. doi: 10.1016/j.trb.2019.03.019
    [12] YANG S J, SI C W, ZHI H Y, et al. A cellular automata model for mixed traffic flow considering the driving behavior of connected automated vehicle platoons[J]. Physica A: Statistical Mechanics and Its Applications, 2021, 582: 126262.1-126262.18.
    [13] CHEN J Z, LIANG H, LI J, et al. A novel distributed cooperative approach for mixed platoon consisting of connected and automated vehicles and human-driven vehicles[J]. Physica A: Statistical Mechanics and Its Applications, 2021, 573: 125939.1-125939.17.
    [14] 李霞,汪一戈,崔洪军,等. 智能网联环境下复杂异质交通流稳定性解析[J]. 交通运输系统工程与信息,2020,20(6): 114-120. doi: 10.16097/j.cnki.1009-6744.2020.06.015

    LI Xia, WANG Yige, CUI Hongjun, et al. Stability analysis of complex heterogeneous traffic flow under connected and autonomous environment[J]. Journal of Transportation Systems Engineering and Information Technology, 2020, 20(6): 114-120. doi: 10.16097/j.cnki.1009-6744.2020.06.015
    [15] GIPPS P G. A behavioural car-following model for computer simulation[J]. Transportation Research Part B: Methodological, 1981, 15(2): 105-111. doi: 10.1016/0191-2615(81)90037-0
    [16] 中华人民共和国住房和城乡建设部. 车库建筑设计规范: JGJ 100—2015[S]. 北京: 中国建筑工业出版社, 2015.
    [17] KERNER B S. Introduction[M]//Introduction to modern traffic flow theory and control. Berlin: Springer, 2009: 1-6.
  • 加载中
图(13) / 表(2)
计量
  • 文章访问数:  539
  • HTML全文浏览量:  126
  • PDF下载量:  56
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-04-28
  • 修回日期:  2022-09-08
  • 网络出版日期:  2023-05-12
  • 刊出日期:  2022-09-21

目录

    /

    返回文章
    返回