Partition Heating Performance of Radiant Floor System in Railway Stations on Plateau
-
摘要:
为了解决高原铁路站房部分区域在强太阳辐射的影响下出现过热、地板辐射供暖系统能耗浪费的问题,以某高原铁路车站为研究对象,根据站房内太阳照射情况对地板辐射系统提出了分区供暖方案;利用建筑能耗模拟软件Energyplus对该铁路站房进行模拟分析,对比了地板辐射系统分区前后站房内的热环境和系统供暖量. 结果表明:地板辐射系统采用统一的设计及运行控制方案供暖时,站房内太阳直射影响区的平均操作温度在日间最高可达27 ℃,与非直射影响区之间的温差超过5 ℃;在地板辐射系统分区供暖时,直射影响区的平均操作温度最高为26 ℃,室内温度分布更为均匀,局部过热现象得到缓解;在保证站房热舒适性的前提下,地板辐射系统的分区供暖方案能够使直射影响区整个供暖季的供暖量降低38.2%.
Abstract:In order to solve the local overheating and the energy waste of radiant floor heating systems in railway stations on the plateau with intensive solar radiation, a railway station on the plateau was studied, and a partition heating scheme of the radiant floor system was proposed according to the solar radiation distribution in the station. The building energy consumption simulation software, namely Energyplus was used to simulate the station, and both the indoor thermal environment and the heating capacity of the radiant floor system with or without the partition scheme were compared. Results show that when the radiant floor system adopts a unified design and operation control scheme for heating, the average operative temperature in the irradiated zone can reach up to 27 ℃ during the daytime, and the temperature difference with the unirradiated zone is more than 5 ℃. When the radiant floor system uses the partition heating scheme, the maximum operative temperature in the irradiated zone is 26 ℃. The indoor temperature distribution is more uniform, and the local overheating is alleviated. Under the premise of ensuring the thermal comfort of the station, the partition heating scheme of the radiant floor system can reduce the heating capacity in the irradiated zone during the heating season by 38.2%.
-
表 1 地板各层材料的热物性参数
Table 1. Thermal properties of floor materials
各层材料 厚度/
mm热导率
/
(W·m−1·K−1)密度
/
(kg·m−3)热容
/
(J·kg−1·K−1)大理石 30 3.84 2600 750 水泥
砂浆20 0.93 1800 840 轻质混
凝土70 1.84 2344 800 挤塑板 50 0.03 35 1380 混凝土
楼板120 1.55 2700 837 表 2 该铁路车站候车厅内的热扰参数
Table 2. Thermal disturbances in waiting hall of railway station
热扰 取值 设置区域 人员 2000 人 人员活动区 灯光 10 W/m2 非人员活动区 设备 15 W/m2 人员活动区 渗透风 1 次/h 所有区域 新风 10 m3/(h·人) 人员活动区 表 3 各地区供暖季平均室外干球温度及累积太阳辐射
Table 3. Outdoor dry bulb temperature and cumulative solar radiation in several regions during heating season
地点 平均室外干
球温度/℃累积太阳
辐射/(kWh·m−2)拉萨 0.8 749.2 林芝 2.7 632.5 昌都 −0.2 624.4 理塘 −3.6 493.6 甘孜 −1.6 601.2 马尔康 1.5 418.9 松潘 −1.7 381.8 表 4 不同地区车站的候车厅直射影响区在分区供暖方案下的供暖量减少情况
Table 4. Reduction in heating capacities of irradiated zones of waiting halls in different regions
地点 供暖减少
量/(kWh·m−2)供暖减少
百分比/%拉萨 15.8 38.2 林芝 12.4 33.1 昌都 12.5 24.8 理塘 8.9 13.7 甘孜 12.6 22.1 马尔康 7.2 14.1 松潘 6.2 9.0 -
[1] 清华大学建筑节能研究中心. 中国建筑节能年度发展研究报告2018[M]. 北京: 中国建筑工业出版社, 2018. [2] 刘晓华, 张涛, 戎向阳. 交通场站建筑热湿环境营造[M]. 北京: 中国建筑工业出版社, 2019. [3] QIAN B, YU T, BI H Q, et al. Measurements of energy consumption and environment quality of high-speed railway stations in China[J]. Energies, 2019, 13(1): 168.1-168.22. [4] ZHAO K, LIU X, JIANG Y. On-site measured performance of a radiant floor cooling/heating system in Xi’an Xianyang International Airport[J]. Solar Energy, 2014, 108: 274-286. doi: 10.1016/j.solener.2014.07.012 [5] 王吉进. 高大空间建筑不同供暖末端方式的耗热量研究[D]. 哈尔滨: 哈尔滨工业大学, 2017. [6] 蔡德源,许志浩. 高大建筑空间采暖方式的分析[J]. 西南交通大学学报,2002,37(3): 269-272.CAI Deyuan, XU Zhihao. Analysis of heating methods for high and large building spaces[J]. Journal of Southwest Jiaotong University, 2002, 37(3): 269-272. [7] ZHANG T, LIU X, ZHANG L, et al. Performance analysis of the air-conditioning system in Xi’an Xianyang International Airport[J]. Energy and Buildings, 2013, 59: 11-20. doi: 10.1016/j.enbuild.2012.12.044 [8] ZHAO K, WENG J, GE J. On-site measured indoor thermal environment in large spaces of airports during winter[J]. Building and Environment, 2020, 167: 106463.1-106463.13. [9] LIU X, LIN L, LIU X, et al. Evaluation of air infiltration in a hub airport terminal: on-site measurement and numerical simulation[J]. Building and Environment, 2018, 143: 163-177. doi: 10.1016/j.buildenv.2018.07.006 [10] LIU X, LIU X, ZHANG T. Influence of air-conditioning systems on buoyancy driven air infiltration in large space buildings: a case study of a railway station[J]. Energy and Buildings, 2020, 210: 109781.1-109781.14. [11] 刘大龙,刘加平,张习龙,等. 青藏高原气候条件下的建筑能耗分析[J]. 太阳能学报,2016,37(8): 2167-2172.LIU Dalong, LIU Jiaping, ZHANG Xilong, et al. Building energy consumption analysis in climatic condition of Tibetan Plateau[J]. Acta Energiae Solaris Sinica, 2016, 37(8): 2167-2172. [12] 薛明珠. 低温地板辐射供暖在高海拔寒冷地区大空间建筑中的适用性研究[D]. 重庆: 重庆大学, 2016. [13] ATHIENITIS A K. Investigation of thermal performance of a passive solar building with floor radiant heating[J]. Solar Energy, 1997, 61(5): 337-345. doi: 10.1016/S0038-092X(97)00077-7 [14] ATHIENITIS A K, CHEN Y. The effect of solar radiation on dynamic thermal performance of floor heating systems[J]. Solar Energy, 2000, 69(3): 229-237. doi: 10.1016/S0038-092X(00)00052-9 [15] 陈辰,雷波. 太阳辐射影响下地板辐射供暖传热特性研究[J]. 制冷与空调,2021,35(4): 527-531.CHEN Chen, LEI Bo. Study on heat transfer characteristics of floor radiant heating under the influence of solar radiation[J]. Refrigeration & Air Conditioning, 2021, 35(4): 527-531. [16] BEJI C, MERABTINE A, MOKRAOUI S, et al. Experimental study on the effects of direct Sun radiation on the dynamic thermal behavior of a floor-heating system[J]. Solar Energy, 2020, 204: 1-12. doi: 10.1016/j.solener.2020.04.055 [17] LI T, MERABTINE A, LACHI M, et al. Experimental study on the thermal comfort in the room equipped with a radiant floor heating system exposed to direct solar radiation[J]. Energy, 2021, 230: 120800.1-120800.13. [18] 王登甲. 间歇采暖太阳能建筑热过程及设计优化研究[D]. 西安: 西安建筑科技大学, 2012. [19] 王登甲,刘艳峰,刘加平. 间歇采暖太阳能建筑设计及运行优化研究[J]. 西安建筑科技大学学报(自然科学版),2012,44(5): 720-725. doi: 10.15986/j.1006-7930.2012.05.026WANG Dengjia, LIU Yanfeng, LIU Jiaping. Study on the design and operation optimization of intermittent solar heating building[J]. Journal of Xi’an University of Architecture & Technology (Natural Science Edition), 2012, 44(5): 720-725. doi: 10.15986/j.1006-7930.2012.05.026 [20] 中华人民共和国住房和城乡建设部. 公共建筑节能设计标准: GB 50189—2015[S]. 北京: 中国建筑工业出版社, 2015. [21] ZHOU J, YU T, WU H, et al. A dynamic model of hollow ventilated interior wall integrated with solar air collector[J]. Applied Thermal Engineering, 2020, 175: 115380.1-115380.12. [22] ISO. Ergonomics of the thermal environment Analytical determination and interpretation of thermal comfort using calculation of the PMV and PPD indices and local thermal comfort criteria: ISO 7730[S]. Geneva: ISO Standardization, 2005. [23] WANG Y, WONG K K L, DU H, et al. Design configuration for a higher efficiency air conditioning system in large space building[J]. Energy and Buildings, 2014, 72: 167-176. doi: 10.1016/j.enbuild.2013.12.041 [24] PENG S, YU J H, GANG W J, et al. Study on load characteristics of different air conditioning systems in large space railway station[J]. IOP Conference Series: Earth and Environmental Science, 2019, 238: 012038.1-012038.12. [25] 陆耀庆. 实用供热空调设计手册[M]. 北京: 中国建筑工业出版社, 2008. [26] 国家铁路局. 铁路旅客车站设计规范: TB 10100—2018[S]. 北京: 中国铁道出版社, 2018. [27] 中国气象局气象信息中心气象资料室, 清华大学建筑技术科学系. 中国建筑热环境分析专用气象数据集[M]. 北京: 中国建筑工业出版社, 2005.