• ISSN 0258-2724
  • CN 51-1277/U
  • EI Compendex
  • Scopus 收录
  • 全国中文核心期刊
  • 中国科技论文统计源期刊
  • 中国科学引文数据库来源期刊

考虑行人摔倒和受伤的斜坡相向流社会力模型

户佐安 魏易东 曾添 马毅

户佐安, 魏易东, 曾添, 马毅. 考虑行人摔倒和受伤的斜坡相向流社会力模型[J]. 西南交通大学学报, 2023, 58(5): 1100-1109. doi: 10.3969/j.issn.0258-2724.20220296
引用本文: 户佐安, 魏易东, 曾添, 马毅. 考虑行人摔倒和受伤的斜坡相向流社会力模型[J]. 西南交通大学学报, 2023, 58(5): 1100-1109. doi: 10.3969/j.issn.0258-2724.20220296
HU Zuoan, WEI Yidong, ZENG Tian, MA Yi. A Social Force Model Considering Falls and Injuries of Pedestrian Counterflow on Slopes[J]. Journal of Southwest Jiaotong University, 2023, 58(5): 1100-1109. doi: 10.3969/j.issn.0258-2724.20220296
Citation: HU Zuoan, WEI Yidong, ZENG Tian, MA Yi. A Social Force Model Considering Falls and Injuries of Pedestrian Counterflow on Slopes[J]. Journal of Southwest Jiaotong University, 2023, 58(5): 1100-1109. doi: 10.3969/j.issn.0258-2724.20220296

考虑行人摔倒和受伤的斜坡相向流社会力模型

doi: 10.3969/j.issn.0258-2724.20220296
基金项目: 国家自然科学基金(71901156)
详细信息
    作者简介:

    户佐安(1979—),男,副教授,博士,研究方向为交通流,运输组织优化等,E-mail:huzuoan@swjtu.edu.cn

    通讯作者:

    马毅(1986—),男,副研究员,博士,研究方向为应急疏散动力学,交通流等,E-mail:yima23_c@scu.edu.cn

  • 中图分类号: X91;U491.2

A Social Force Model Considering Falls and Injuries of Pedestrian Counterflow on Slopes

  • 摘要:

    行人在斜坡上运动时,其受力情况、运动速度及心理状态均与在平地运动时不同,难以应用现有社会力模型进行有效仿真. 为此,考虑斜坡上行人的运动特征,提出一个改进的社会力模型,此模型基于过往实证数据对行人在斜坡上的期望速度进行了校准,并提出了推搡行为下行人摔倒的概率计算方法,同时,结合行人体重、运动加速度、承受压力及等待时间等实时状态实现了对行人摔倒、受伤及不耐烦心理的模拟. 斜坡相向行人流场景仿真结果表明:坡度、行人初始密度的升高会延长人群运动时间,使人均意外发生率上升最高至38.0%;不耐烦心理有助于车道效应的形成,但会降低人群运动效率;行人流基本图中,高坡度下流量-密度关系趋势不如平地明显,各坡度行人平均速度比较接近.

     

  • 图 1  行人斜坡受力

    Figure 1.  Force analysis of pedestrians on the slope

    图 2  不同文献斜坡行人速率对比

    Figure 2.  Comparison of pedestrian speeds on slopes in different literature

    图 3  行人摔倒示意

    Figure 3.  Process of pedestrian fall

    图 4  车道效应示意

    Figure 4.  Lane effect

    图 5  车道效应形成过程

    Figure 5.  Process of lane effect formation

    图 6  斜坡模型示意

    Figure 6.  Slope model

    图 7  仿真界面

    Figure 7.  Simulation interface

    图 8  相向流各阶段示意

    Figure 8.  Different phases of counterflow

    图 9  经典模型与改进模型对比(t=18 s)

    Figure 9.  Comparison of traditional model and improved model (t=18 s)

    图 10  不同密度、不同坡度下的行人平均运动时间

    Figure 10.  Average movement time of pedestrians under different densities and slopes

    图 11  不同坡度下的行人平均运动时间统计

    Figure 11.  Average movement time of pedestrians under different slopes

    图 12  不同行人初始密度下的受伤情况统计

    Figure 12.  Injured pedestrians under different initial densities

    图 13  各不耐烦因子下的人群运动效率及人均意外发生率

    Figure 13.  Movement efficiency and per capita accident rate of the crowd under different impatience factors

    图 14  开放边界斜坡仿真场景

    Figure 14.  Simulation scenario of open boundary slope

    图 15  各坡度下的流量-密度关系

    Figure 15.  Flow-density relationship under different slopes

    图 16  各坡度下的速度-密度关系

    Figure 16.  Speed-density relationship under different slopes

    表  1  模型各参数取值

    Table  1.   Parameter values of the model

    参数取值
    τi/s0.5
    Ai/N2 × 103
    Bi/m0.08
    σ10.1
    σ20
    vi0根据式(5)取值
    k/(kg•s−21.2 × 105
    κ/(kg•m−1•s−12.4 × 105
    mi[50,80]
    ri根据式(6)取值
    Ts/s2
    Tim/s2
    Pi根据式(7)取值
    Qi根据式(9)取值
    kim1
    qs0.8
    下载: 导出CSV

    表  2  分析指标及含义

    Table  2.   Analysis indicators and meanings

    分析指标含义
    行人初始密度仿真开始时刻在坡顶和坡底平台下的行人密度
    平均运动时间每个行人离开斜坡的平均时长
    轻伤人数运动过程中受轻伤的人数
    重伤人数运动过程中受重伤的人数
    人群运动效率30 s 内完成离开斜坡人数占总人数的比例
    人均意外发生率运动过程中人均受伤或摔倒次数,摔倒并受伤按 2 次意外计
    下载: 导出CSV
  • [1] 马剑,王若成,邱谦谦. 紧急情况下城市轨道隧道客流疏散配流模型研究[J]. 铁道学报,2016,38(6): 8-14. doi: 10.3969/j.issn.1001-8360.2016.06.003

    MA Jian, WANG Ruocheng, QIU Qianqian. Passenger assignment model for emergency evacuation in metro rail tunnels[J]. Journal of the China Railway Society, 2016, 38(6): 8-14. doi: 10.3969/j.issn.1001-8360.2016.06.003
    [2] MA J A, SHI D D, LI T, et al. Experimental study of single-file pedestrian movement with height constraints[J]. Journal of Statistical Mechanics: Theory and Experiment, 2020, 2020(7): 073409.1-073409.17.
    [3] KAWAMURA K, TOKUHIRO A, TAKECHI H. Gait analysis of slope walking: a study on step length, stride width, time factors and deviation in the center of pressure[J]. Acta Medica Okayama, 1991, 45(3): 179-184.
    [4] SUN J, WALTERS M, SVENSSON N, et al. The influence of surface slope on human gait characteristics: a study of urban pedestrians walking on an inclined surface[J]. Ergonomics, 1996, 39(4): 677-692. doi: 10.1080/00140139608964489
    [5] MCINTOSH A S, BEATTY K T, DWAN L N, et al. Gait dynamics on an inclined walkway[J]. Journal of Biomechanics, 2006, 39(13): 2491-2502. doi: 10.1016/j.jbiomech.2005.07.025
    [6] FINNIS K K, WALTON D. Field observations to determine the influence of population size, location and individual factors on pedestrian walking speeds[J]. Ergonomics, 2008, 51(6): 827-842. doi: 10.1080/00140130701812147
    [7] PINGEL T J. Modeling slope as a contributor to route selection in mountainous areas[J]. Cartography and Geographic Information Science, 2010, 37(2): 137-148. doi: 10.1559/152304010791232163
    [8] WALL-SCHEFFLER C M. Sex differences in incline-walking among humans[J]. Integrative and Comparative Biology, 2015, 55(6): 1155-1165.
    [9] SHEEHAN R C, GOTTSCHALL J S. At similar angles, slope walking has a greater fall risk than stair walking[J]. Applied Ergonomics, 2012, 43(3): 473-478. doi: 10.1016/j.apergo.2011.07.004
    [10] MEEDER M, AEBI T, WEIDMANN U. The influence of slope on walking activity and the pedestrian modal share[J]. Transportation Research Procedia, 2017, 27: 141-147. doi: 10.1016/j.trpro.2017.12.095
    [11] BROACH J, DILL J. Pedestrian route choice model estimated from revealed preference GPS data[C]//Proceedings of Transportation Research Board 94th Annual Meeting. Washington D. C.: Transportation Research Board, 2015: 3669.1-3669.13
    [12] 殷路伟,杜志刚,罗正宇,等. 城市人行过街天桥局部通行能力分析研究[J]. 武汉理工大学学报(交通科学与工程版),2015,39(5): 996-1000.

    YIN Luwei, DU Zhigang, LUO Zhengyu, et al. Analysis of local capacity for urban pedestrian overcrossing[J]. Journal of Wuhan University of Technology (Transportation Science & Engineering), 2015, 39(5): 996-1000.
    [13] HENDERSON L F. The statistics of crowd fluids[J]. Nature, 1971, 229(5284): 381-383. doi: 10.1038/229381a0
    [14] HENDERSON L F. On the fluid mechanics of human crowd motion[J]. Transportation Research, 1974, 8(6): 509-515. doi: 10.1016/0041-1647(74)90027-6
    [15] YUE F R, CHEN J, MA J, et al. Cellular automaton modeling of pedestrian movement behavior on an escalator[J]. Chinese Physics B, 2018, 27(12): 124501.1-124501.6.
    [16] FU Z J, XIA L A, YANG H T, et al. Simulation study of overtaking in pedestrian flow using floor field cellular automaton model[J]. International Journal of Modern Physics C, 2017, 28(5): 1750059.1-1750059.17.
    [17] 李芳,狄月,陈绍宽,等. 考虑客流引导和小群体行为的地铁车站疏散模型[J]. 西南交通大学学报,2019,54(3): 587-594. doi: 10.3969/j.issn.0258-2724.20170668

    LI Fang, DI Yue, CHEN Shaokuan, et al. Modelling passenger evacuation from metro platforms considering passenger flow guidance and small group behaviour[J]. Journal of Southwest Jiaotong University, 2019, 54(3): 587-594. doi: 10.3969/j.issn.0258-2724.20170668
    [18] 菅肖霞,张小宁. 斜坡通道双向行人流安全疏散行为研究[J]. 系统工程理论与实践,2017,37(10): 2715-2726. doi: 10.12011/1000-6788(2017)10-2715-12

    JIAN Xiaoxia, ZHANG Xiaoning. Study on safety evacuation behavior for counter flow on an inclined tunnel[J]. Systems Engineering−Theory & Practice, 2017, 37(10): 2715-2726. doi: 10.12011/1000-6788(2017)10-2715-12
    [19] SARMADY S, HARON F, TALIB A Z. Simulation of pedestrian movements on slope using fine grid cellular automata[EB/OL]. (2020-10-07)[2022-04-20]. https://doi.org/10.48550/arXiv.2010.03387
    [20] 王丽,刘茂,孟博,等. 开放空间复杂地形人员疏散模拟研究[J]. 中国安全科学学报,2012,22(1): 29-33. doi: 10.3969/j.issn.1003-3033.2012.01.005

    WANG Li, LIU Mao, MENG Bo, et al. Simulation study on pedestrian evacuation in open space under complicated topographic condition[J]. China Safety Science Journal, 2012, 22(1): 29-33. doi: 10.3969/j.issn.1003-3033.2012.01.005
    [21] TOBLER W. Non-isotropic geographic modeling[R]. Santa Barbara: National Center for Geograpgic Information and Analysis, 1993.
    [22] 汤雪飞,季经纬,谢信亮,等. 坡度对疏散影响的试验研究[J]. 消防科学与技术,2017,36(11): 1508-1511. doi: 10.3969/j.issn.1009-0029.2017.11.008

    TANG Xuefei, JI Jingwei, XIE Xinliang, et al. The experimental studies on influence of slope on evacuation[J]. Fire Science and Technology, 2017, 36(11): 1508-1511. doi: 10.3969/j.issn.1009-0029.2017.11.008
    [23] FUJIYAMA T, TYLER N. Predicting the walking speed of pedestrians on stairs[J]. Transportation Planning and Technology, 2010, 33(2): 177-202. doi: 10.1080/03081061003643770
    [24] FRUIN J J. Designing for pedestrians: a level of service concept[J]. Highway Research Record, 1971, 1971(35): 1-15.
    [25] FRUIN J J. Pedestrian planning and design[J]. Metropolitan Association of Urban Designers and Environmental Planners, 1971, 77(4): 556-561.
    [26] HELBING D, FARKAS I, VICSEK T. Simulating dynamical features of escape panic[J]. Nature, 2000, 407(6803): 487-490. doi: 10.1038/35035023
    [27] CHEN X, TREIBER M, KANAGARAJ V, et al. Social force models for pedestrian traffic−state of the art[J]. Transport Reviews, 2018, 38(5): 625-653. doi: 10.1080/01441647.2017.1396265
    [28] 纪仲秋,赵盼超,姜桂萍,等. 人体在向后滑倒时平衡调节能力的生物力学研究[J]. 北京师范大学学报(自然科学版),2018,54(2): 269-276. doi: 10.16360/j.cnki.jbnuns.2018.02.019

    JI Zhongqiu, ZHAO Panchao, JIANG Guiping, et al. Biomechanic of balancing and adjusting the human body in backward slip[J]. Journal of Beijing Normal University (Natural Science), 2018, 54(2): 269-276. doi: 10.16360/j.cnki.jbnuns.2018.02.019
    [29] KHOW K S F, VISVANATHAN R. Falls in the aging population[J]. Clinics in Geriatric Medicine, 2017, 33(3): 357-368. doi: 10.1016/j.cger.2017.03.002
    [30] ELVIK R, BJØRNSKAU T. Risk of pedestrian falls in Oslo, Norway: relation to age, gender and walking surface condition[J]. Journal of Transport & Health, 2019, 12: 359-370.
    [31] HELBING D, MUKERJI P. Crowd disasters as systemic failures: analysis of the Love Parade disaster[J]. EPJ Data Science, 2012, 1(1): 1-40. doi: 10.1140/epjds1
    [32] LIANG H Y, DU J, WONG S C. A continuum model for pedestrian flow with explicit consideration of crowd force and panic effects[J]. Transportation Research Part B: Methodological, 2021, 149: 100-117. doi: 10.1016/j.trb.2021.05.006
    [33] HELBING D, BUZNA L, JOHANSSON A, et al. Self-organized pedestrian crowd dynamics: experiments, simulations, and design solutions[J]. Transportation Science, 2005, 39(1): 1-24. doi: 10.1287/trsc.1040.0108
    [34] LEE J, KIM T, CHUNG J H, et al. Modeling lane formation in pedestrian counter flow and its effect on capacity[J]. KSCE Journal of Civil Engineering, 2016, 20(3): 1099-1108. doi: 10.1007/s12205-016-0741-9
    [35] 张琦,渠静. 基于前摄效应的不耐烦行为建模与双向行人流动态[J]. 物理学报,2022,71(7): 070502.1-070502.13.

    ZHANG Qi, QU Jing. Impatient behavior modelling and simulation of bidirectional pedestrian flow dynamics based on proactive effect[J]. Acta Physica Sinica, 2022, 71(7): 070502.1-070502.13.
    [36] 中华人民共和国住房和城乡建设部. 地铁设计规范: GB 50157—2013[S]. 北京: 中国建筑工业出版社, 2014.
    [37] VANUMU L D, RAMACHANDRA RAO K, TIWARI G. Fundamental diagrams of pedestrian flow characteristics: a review[J]. European Transport Research Review, 2017, 9(4): 49.1-49.13.
  • 加载中
图(16) / 表(2)
计量
  • 文章访问数:  302
  • HTML全文浏览量:  109
  • PDF下载量:  36
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-04-22
  • 修回日期:  2022-10-20
  • 网络出版日期:  2023-06-01
  • 刊出日期:  2022-11-03

目录

    /

    返回文章
    返回