• ISSN 0258-2724
  • CN 51-1277/U
  • EI Compendex
  • Scopus 收录
  • 全国中文核心期刊
  • 中国科技论文统计源期刊
  • 中国科学引文数据库来源期刊

铁路客车非金属材料VOCs释放规律试验研究

房明 王卫 周正宇 杨冰 范希梅

房明, 王卫, 周正宇, 杨冰, 范希梅. 铁路客车非金属材料VOCs释放规律试验研究[J]. 西南交通大学学报, 2024, 59(1): 87-93, 112. doi: 10.3969/j.issn.0258-2724.20220294
引用本文: 房明, 王卫, 周正宇, 杨冰, 范希梅. 铁路客车非金属材料VOCs释放规律试验研究[J]. 西南交通大学学报, 2024, 59(1): 87-93, 112. doi: 10.3969/j.issn.0258-2724.20220294
FANG Ming, WANG Wei, ZHOU Zhengyu, YANG Bing, FAN Ximei. Experimental Study on Emission Law of VOCs from Non-metallic Materials for Railway Passenger Trains[J]. Journal of Southwest Jiaotong University, 2024, 59(1): 87-93, 112. doi: 10.3969/j.issn.0258-2724.20220294
Citation: FANG Ming, WANG Wei, ZHOU Zhengyu, YANG Bing, FAN Ximei. Experimental Study on Emission Law of VOCs from Non-metallic Materials for Railway Passenger Trains[J]. Journal of Southwest Jiaotong University, 2024, 59(1): 87-93, 112. doi: 10.3969/j.issn.0258-2724.20220294

铁路客车非金属材料VOCs释放规律试验研究

doi: 10.3969/j.issn.0258-2724.20220294
基金项目: 江苏省博士后资助基金(2020Z375)
详细信息
    作者简介:

    房明(1986—),男,高级工程师,博士,研究方向为轨道交通环保管控,E-mail:nanhang0508@163.com

    通讯作者:

    杨冰(1979—),男,研究员,博士,研究方向为车辆结构强度及材料疲劳与断裂, E-mail:yb@swjtu.edu.cn

  • 中图分类号: U270.42

Experimental Study on Emission Law of VOCs from Non-metallic Materials for Railway Passenger Trains

  • 摘要:

    为了研究温度对铁路客车典型非金属材料中挥发性有机化合物释放量的影响,基于多气固比法和数据拟合法,对典型非金属材料(重防腐涂料、地板布、玻璃纤维增强塑料)的挥发性有机化合物释放规律进行了试验研究. 首先,分别测量了4种不同气固比条件下的挥发性有机化合物浓度,得到挥发性有机化合物释放关键参数(初始可散发浓度和分配系数);然后,结合车辆工艺和运用场景,研究不同温度对挥发性有机化合物释放规律的影响. 研究结果表明:材质的物理化学性能和温度是影响挥发性有机化合物释放特性的重要因素;温度从16 ℃升高至55 ℃,苯系物和醛类散发浓度均呈减小的趋势,重防腐涂料的初始可散发浓度减小为1.8%,其分配系数减小,地板布和玻璃钢的初始可散发浓度减小至0.3%以下,地板布的分配系数增大,玻璃钢的分配系数减小;苯系物是挥发性有机化合物的主要成分,其中以苯乙烯占比最大,甲苯、乙苯以及二甲苯占比排序规律不明显,并且未检测出苯;在铁道车辆烘焙法环保净化处理时,建议重防腐涂料的烘焙温度不小于55 ℃,地板布和玻璃钢的烘焙温度不小于45 ℃.

     

  • 图 1  试验示意

    Figure 1.  Diagram of experiment

    图 2  不同非金属材料的VOCs线性拟合结果

    Figure 2.  Linear fitting results for VOCs from different non-metallic materials

    图 3  不同温度时重防腐涂料中VOCs平衡浓度

    Figure 3.  Concentrations of VOCs from heavy anti-corrosion coatings at different temperatures

    图 4  不同温度时地板布中VOCs平衡浓度

    Figure 4.  Equilibrium concentrations of VOCs from floor covering at different temperatures

    图 5  不同温度时玻璃钢中VOCs平衡浓度

    Figure 5.  Equilibrium concentrations of VOCs from glassfiber reinforced plastics at different temperatures

    表  1  试验设备

    Table  1.   Experimental equipment

    设备名称型号规格
    聚氟乙烯(PVF)薄膜袋 100 L
    氮气  体积分数不小于99.99%
    恒温恒湿环境仓 DNF-500A
    大气采样仪 QC-2B双路
     2,6-二苯呋喃多孔聚合
    物树脂(porous polymer 2,6-diphenyl
    furan resin, Tenax-TA)采样管
    200 mg
     2,4-二硝基苯肼(2,4-dinitrophenyl
    hydrazine, DNPH)采样管
    300 mg/mL
    质谱联用仪(GC-MS/MS)  EXPEC 5231 气相色谱
    高效液相色谱仪 EX1600
    下载: 导出CSV

    表  2  测试工况

    Table  2.   Experimental conditions

    测试材料测试
    温度/℃
    气固比实车气
    固比
    重防腐
    涂料
    16、25、
    35、45、55
    941.2、392.2、170.0、94.1170.0
    地板布671.4、333.3、142.9、65.8617.4
    玻璃钢1000.0、416.0、333.3、250.0416.0
    下载: 导出CSV

    表  3  重防腐涂料中VOCs的释放关键参数值

    Table  3.   Key emission parameters for VOCs in heavy anti-corrosion coatings

    编号VOC16 ℃25 ℃35 ℃45 ℃55 ℃
    C0/(mg·m−3 K C0/(mg·m−3 K C0/(mg·m−3 K C0/(mg·m−3 K C0/(mg·m−3 K
    1 甲苯 518.135 3725.824 61.576 835.039 21.128 793.823 23.095 502.336 6.455 1446.152
    2 乙苯 390.625 1110.180 75.643 333.204 10.492 85.016 71.839 626.232 4.187 425.315
    3 二甲苯 540.541 1382.216 71.839 280.830 6.913 122.833 101.523 751.252 5.675 390.967
    4 苯乙烯 2917.893 850.041 558.659 343.128 56.211 144.483 729.927 795.599 46.926 1071.506
    5 TVOC 4099.150 915.176 1562.500 744.719 104.932 128.583 970.874 667.942 72.098 361.066
    下载: 导出CSV

    表  4  地板布中VOCs的释放关键参数值

    Table  4.   Key emission parameters for VOCs in floor covering

    VOC16 ℃25 ℃35 ℃45 ℃55 ℃
    C0/(mg·m−3 K C0/(mg·m−3 K C0/(mg·m−3 K C0/(mg·m−3 K C0/(mg·m−3 K
    甲苯 606.061 1219.267 12.133 974.328 51.125 904.766 4.318 373.513
    乙苯 1154.450 932.784 99.602 4463.983 81.169 514.978 1.514 104.657
    二甲苯 1261.456 853.349 36.298 1847.089 56.433 477.818 1.124 54.591
    苯乙烯 7435.884 1076.419 15.359 415.293 699.301 472.664 7.343 89.615
    TVOC 10360.687 971.211 189.394 1251.769 961.538 505.750 17.268 86.127 8.632 1501.000
    下载: 导出CSV

    表  5  玻璃钢中VOCs的释放关键参数值

    Table  5.   Key emission parameters for VOCs in glassfiber reinforced plastics

    VOC16 ℃25 ℃35 ℃45 ℃55 ℃
    C0/(mg·m−3 K C0/(mg·m−3 K C0/(mg·m−3 K C0/(mg·m−3 K C0/(mg·m−3 K
    甲苯 52.138 1903.920 11.022 459.013 168.067 1807.793
    乙苯 198.807 1348.443 12.620 293.751 359.712 2394.435
    二甲苯 240.385 1249.683 13.748 448.944 537.634 3066.505
    苯乙烯 1578.467 1295.969 55.066 160.374 3723.909 1973.337
    TVOC 2162.751 1288.589 100.705 177.282 4668.207 1350.396 21.231 1758.985 6.831 292.682
    下载: 导出CSV
  • [1] 张寅平. 室内空气安全和健康: 问题、思考和建议[J]. 安全,2020,41(9): 1-10,89.

    ZHANG Yinping. Problems, thinking and suggestions on indoor air safety and health[J]. Safety & Security, 2020, 41(9): 1-10,89.
    [2] XU H M, LI Y Q, FENG R, et al. Comprehensive characterization and health assessment of occupational exposures to volatile organic compounds (VOCs) in Xi’an, a major city of northwestern China[J]. Atmospheric Environment, 2021, 246: 118085.1-118085.10.
    [3] 国家铁路局. 机车车辆非金属材料及室内空气有害物质限量: TB/T 3139—2021[S]. 北京: 中国铁道出版社, 2021.
    [4] 李少华. 高速动车组车内空气质量管控方式研究[J]. 铁道车辆,2020,58(6): 30-31,6. doi: 10.3969/j.issn.1002-7602.2020.06.013

    LI Shaohua. Research on control of air quality inside high speed multiple units[J]. Rolling Stock, 2020, 58(6): 30-31,6. doi: 10.3969/j.issn.1002-7602.2020.06.013
    [5] 李莉,石卫兵,张兰兰,等. 轨道交通车辆车内挥发性有机化合物的管控现状及建议[J]. 城市轨道交通研究,2018,21(6): 81-84,87.

    LI Li, SHI Weibing, ZHANG Lanlan, et al. Current management and control of interior volatile organic compounds in rail transit vehicles and suggestions[J]. Urban Mass Transit, 2018, 21(6): 81-84,87.
    [6] 严伟. 建材VOCs散发关键参数测定及散发模拟研究[D]. 北京: 清华大学, 2009.
    [7] 周晓骏. 多孔建材VOC多尺度传质机理及散发特性研究[D]. 西安: 西安建筑科技大学, 2017.
    [8] LITTLE J C, HODGSON A T, GADGIL A J. Modeling emissions of volatile organic compounds from new carpets[J]. Atmospheric Environment, 1994, 28(2): 227-234. doi: 10.1016/1352-2310(94)90097-3
    [9] LIU Z, YE W, LITTLE J C. Predicting emissions of volatile and semivolatile organic compounds from building materials: a review[J]. Building and Environment, 2013, 64: 7-25. doi: 10.1016/j.buildenv.2013.02.012
    [10] LI M. Robust nonfitting way to determine mass diffusivity and initial concentration for VOCs in building materials with accuracy estimation[J]. Environmental Science & Technology, 2013, 47(16): 9086-9092.
    [11] COX S S, LITTLE J C, HODGSON A T. Measuring concentrations of volatile organic compounds in vinyl flooring[J]. Journal of the Air & Waste Management Association, 2001, 51(8): 1195-1201.
    [12] SMITH J F, GAO Z, ZHANG J S, et al. A new experimental method for the determination of emittable initial VOC concentrations in building materials and sorption isotherms for IVOCs[J]. Clean-Soil, Air, Water, 2009, 37(6): 454-458. doi: 10.1002/clen.200900003
    [13] BODALAL A, ZHANG J S, PLETT E G. A method for measuring internal diffusion and equilibrium partition coefficients of volatile organic compounds for building materials[J]. Building and Environment, 2000, 35(2): 101-110. doi: 10.1016/S0360-1323(99)00005-0
    [14] BLONDEAU P, TIFFONNET A L, DAMIAN A, et al. Assessment of contaminant diffusivities in building materials from porosimetry tests[J]. Indoor Air, 2003, 13(3): 310-318. doi: 10.1034/j.1600-0668.2003.00208.x
    [15] LIU Z, HOWARD-REED C, COX S S, et al. Diffusion-controlled reference material for VOC emissions testing: effect of temperature and humidity[J]. Indoor Air, 2014, 24(3): 283-291. doi: 10.1111/ina.12076
    [16] XIONG J Y, YAO Y, ZHANG Y P. C-history method: rapid measurement of the initial emittable concentration, diffusion and partition coefficients for formaldehyde and VOCs in building materials[J]. Environmental Science & Technology, 2011, 45(8): 3584-3590.
    [17] XU B P, WANG Y Z, GUO D D, et al. Determination of the key parameters of VOCs emitted from multi-layer leather furniture using a region traversal approach[J]. Science of the Total Environment, 2022, 819: 153126.1-153126.10.
    [18] 王海媚,童丽萍,熊建银. 基于小环境舱测试的实际车内VOC浓度预测[J]. 北京理工大学学报,2022,42(2): 145-151. doi: 10.15918/j.tbit1001-0645.2021.129

    WANG Haimei, TONG Liping, XIONG Jianyin. Prediction of In-vehicle VOC concentrations based on small-scale chamber test[J]. Transactions of Beijing Institute of Technology, 2022, 42(2): 145-151. doi: 10.15918/j.tbit1001-0645.2021.129
    [19] 杨韬,熊建银,郝玲. 直流舱测定材料VOC散发关键参数的浓度轨迹法[J]. 化工学报,2015,66(增1): 314-318.

    YANG Tao, XIONG Jianyin, HAO Ling. Measuring key emission parameters of VOC from materials based on concentration trajectory in ventilated chamber[J]. CIESC Journal, 2015, 66(S1): 314-318.
    [20] 杨韬,何章灿,熊建银. 材料中SVOC散发关键参数的测定方法及影响因素研究[J]. 暖通空调,2019,49(7): 44-49.

    YANG Tao, HE Zhangcan, XIONG Jianyin. Measurement and influencing factors of key parameters of SVOC emission from materials[J]. Heating Ventilating & Air Conditioning, 2019, 49(7): 44-49.
    [21] 王元正,孙丽华,于雪斐,等. 温度对木制家具中VOC散发关键参数的影响[J]. 工程热物理学报,2021,42(9): 2438-2441.

    WANG Yuanzheng, SUN Lihua, YU Xuefei, et al. Impact of temperature on the key parameters of VOC from wooden furniture[J]. Journal of Engineering Thermophysics, 2021, 42(9): 2438-2441.
  • 加载中
图(5) / 表(5)
计量
  • 文章访问数:  262
  • HTML全文浏览量:  122
  • PDF下载量:  17
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-04-27
  • 修回日期:  2022-09-14
  • 网络出版日期:  2023-05-19
  • 刊出日期:  2022-09-20

目录

    /

    返回文章
    返回