• ISSN 0258-2724
  • CN 51-1277/U
  • EI Compendex
  • Scopus 收录
  • 全国中文核心期刊
  • 中国科技论文统计源期刊
  • 中国科学引文数据库来源期刊

结合型式对地铁车站上盖物业的振动响应影响

许炜萍 刘易然 黄谦 刘旭 赵楚轩 王呼佳 杨朋 孙克国

许炜萍, 刘易然, 黄谦, 刘旭, 赵楚轩, 王呼佳, 杨朋, 孙克国. 结合型式对地铁车站上盖物业的振动响应影响[J]. 西南交通大学学报, 2024, 59(3): 653-662. doi: 10.3969/j.issn.0258-2724.20220284
引用本文: 许炜萍, 刘易然, 黄谦, 刘旭, 赵楚轩, 王呼佳, 杨朋, 孙克国. 结合型式对地铁车站上盖物业的振动响应影响[J]. 西南交通大学学报, 2024, 59(3): 653-662. doi: 10.3969/j.issn.0258-2724.20220284
XU Weiping, LIU Yiran, HUANG Qian, LIU Xu, ZHAO Chuxuan, WANG Hujia, YANG Peng, SUN Keguo. Influence of Combination Types on Vibration Response of Superstructure of Subway Station[J]. Journal of Southwest Jiaotong University, 2024, 59(3): 653-662. doi: 10.3969/j.issn.0258-2724.20220284
Citation: XU Weiping, LIU Yiran, HUANG Qian, LIU Xu, ZHAO Chuxuan, WANG Hujia, YANG Peng, SUN Keguo. Influence of Combination Types on Vibration Response of Superstructure of Subway Station[J]. Journal of Southwest Jiaotong University, 2024, 59(3): 653-662. doi: 10.3969/j.issn.0258-2724.20220284

结合型式对地铁车站上盖物业的振动响应影响

doi: 10.3969/j.issn.0258-2724.20220284
基金项目: 国家自然科学基金(52178396)
详细信息
    作者简介:

    许炜萍(1981—),女,副教授,硕士生导师,研究方向为地下工程抗减震,E-mail:xwp1981@126.com

  • 中图分类号: U25

Influence of Combination Types on Vibration Response of Superstructure of Subway Station

  • 摘要:

    为研究地铁振动对不同结合类型地铁车站及其上方的动力反应影响,基于地铁车站与上盖物业连接型式的主要承载区别,提出“软结合”“硬结合Ⅰ”“硬结合Ⅱ”3种结合型式;然后,采用车-轨耦合模型得到列车荷载谱,利用有限差分软件FLAC3D建立地铁车站-上盖物业数值仿真模型,并与实测数据进行对比,验证数值仿真模型与参数的正确性;最后,基于数值仿真,从时域、频域出发,研究3种结合型式下上盖物业的振动响应. 研究结果表明:软结合型式下站厅层到上盖物业一层加速度峰值减小69.10%,硬结合Ⅰ型减小2.08%,硬结合Ⅱ型增大2.94%,硬结合型式下上盖物业振动加速度较软结合型式大;3种结合型式下上盖物业振动的频率主要在40~90 Hz,且对于上盖物业同一楼层,振动随距振源距离的增大而逐渐减小;软结合型式下上盖物业一层加速度级最大值为68.2 dB,较站厅层减小11.3 dB;硬结合Ⅰ型、硬结合Ⅱ型的上盖物业加速度级最大值分别为83.4 、79.4 dB;地铁振动造成上盖物业附加第一主应力很小,且在向上传播过程中衰减很快;从站厅层到上盖物业,软结合型式第一主应力衰减85.81%,硬结合Ⅰ、Ⅱ型式分别衰减63.46%、72.27%,间隔土对附加应力有明显衰减作用. 在地铁实际建设工程中建议选用软结合型式.

     

  • 图 1  软、硬结合示意

    Figure 1.  Soft and hard combinations

    图 2  数值仿真模型及测点布置(单位:m)

    Figure 2.  Numerical simulation model and layout of measuring points (unit: m)

    图 3  荷载施加示意

    Figure 3.  Load application

    图 4  数值仿真模型

    Figure 4.  Numerical simulation model

    图 5  数值仿真与现场实测结果对比

    Figure 5.  Comparison of numerical simulation and field measured results

    图 6  软结合型式下各楼层加速度时程曲线

    Figure 6.  Acceleration time-history curves of each floor under soft combination

    图 7  硬结合Ⅰ型下各楼层加速度时程曲线

    Figure 7.  Acceleration time-history curves of each floor under hard combination Ⅰ

    图 8  硬结合Ⅱ型下各楼层加速度时程曲线

    Figure 8.  Acceleration time-history curves of each floor under hard combination Ⅱ

    图 9  各测点加速度级峰值

    Figure 9.  Peak values of acceleration level of each measuring point

    图 10  A1各断面振动加速度频谱

    Figure 10.  Vibration acceleration spectrum of each section of the A1 floor

    图 11  断面3各楼层振动加速度频谱

    Figure 11.  Vibration acceleration spectrum of the third section of each floor

    图 12  3种型式下第一主应力时程曲线

    Figure 12.  Time-history curves of first principal stress under different combination types

    表  1  地层及结构物理力学参数

    Table  1.   Physical and mechanical parameters of strata and structures

    序号名称重度/(KN·m−3弹性模量/MPa泊松比厚度/m内摩擦角/(°)黏聚力/kPa
    1素填土16.518.000.333.55.79.4
    2淤泥质粉细砂17.130.000.256.023.0
    3粉质黏土19.8105.000.322.522.622.2
    4全风化粉砂岩19.3225.000.293849.310.3
    5钢轨78.52.01×1050.30
    6地铁车站24.03.00×1040.20
    7上盖物业24.02.80×1040.20
    下载: 导出CSV

    表  2  轨道部件物理力学参数

    Table  2.   Physical and mechanical parameters of track components

    钢轨 扣件 道床板
    质量/
    (kg·m−1
    密度/
    (kg·m−3
    弹性
    模量/GPa
    泊松比 垂向刚度/
    (MN·m−1
    扣件间距/m 弹性模量/
    GPa
    泊松比 密度/
    (kg·m−3
    60 7850 205.9 0.30 59.2 0.6 32.5 0.24 2400
    下载: 导出CSV

    表  3  不同结合型断面3各楼层的第一主应力峰值

    Table  3.   First principal stress peak value of the third section of each floor under different combination types

    楼层软结合硬结合Ⅰ硬结合Ⅱ
    A0899.33849.54952.66
    A1127.60310.39264.16
    A2113.31264.24180.05
    A3109.44200.76172.24
    A4120.30233.98192.38
    衰减率/%85.8163.4672.27
    注:衰减率指A0到A1的第一主应力衰减率.
    下载: 导出CSV
  • [1] 翟婉明,赵春发. 现代轨道交通工程科技前沿与挑战[J]. 西南交通大学学报,2016,51(2): 209-226.

    ZHAI Wanming, ZHAO Chunfa. Frontiers and challenges of sciences and technologies in modern railway engineering[J]. Journal of Southwest Jiaotong University, 2016, 51(2): 209-226.
    [2] 刘维宁,马蒙,刘卫丰,等. 我国城市轨道交通环境振动影响的研究现况[J]. 中国科学:技术科学,2016,46(6): 547-559. doi: 10.1360/N092015-00334

    LIU Weining, MA Meng, LIU Weifeng, et al. Overview on current research of environmental vibration influence induced by urban mass transit in China[J]. Scientia Sinica (Technologica), 2016, 46(6): 547-559. doi: 10.1360/N092015-00334
    [3] 邹超. 地铁车辆段及上盖建筑物振动传播规律及减振技术研究[D]. 广州: 华南理工大学, 2017.
    [4] 袁葵. 地铁车辆段上盖建筑车致振动特性分析与隔振研究[D]. 武汉: 武汉理工大学, 2019.
    [5] 吕文婷. 地铁双层地下车辆段上盖物业振动影响分析[D]. 成都: 西南交通大学, 2019.
    [6] 谢伟平,陈艳明,姚春桥. 地铁车辆段上盖物业车致振动分析[J]. 振动与冲击,2016,35(8): 110-115. doi: 10.13465/j.cnki.jvs.2016.08.017

    XIE Weiping, CHEN Yanming, YAO Chunqiao. Vibration analysis of train depot over-track buildings induced by train load[J]. Journal of Vibration and Shock, 2016, 35(8): 110-115. doi: 10.13465/j.cnki.jvs.2016.08.017
    [7] QU S, YANG J J, ZHU S Y, et al. Experimental study on ground vibration induced by double-line subway trains and road traffic[J]. Transportation Geotechnics, 2021, 29: 100564.1-100564.14.
    [8] REAL T, ZAMORANO C, RIBES F, et al. Train-induced vibration prediction in tunnels using 2D and 3D FEM models in time domain[J]. Tunnelling and Underground Space Technology, 2015, 49: 376-383. doi: 10.1016/j.tust.2015.05.004
    [9] 赵彦辉. 地铁车辆段列车振动对邻近建筑物影响及隔振措施研究[D]. 北京: 北京交通大学, 2019.
    [10] YANG W B, ZHANG C P, LIU D X, et al. The effect of cross-sectional shape on the dynamic response of tunnels under train induced vibration loads[J]. Tunnelling and Underground Space Technology, 2019, 90: 231-238. doi: 10.1016/j.tust.2019.05.006
    [11] ZHANG J C, YAN Q X, SUN M H, et al. Experimental study on the vibration damping of two parallel shield tunnels connected by an assembled transverse passage[J]. Tunnelling and Underground Space Technology, 2021, 107: 103659.1-103659.10.
    [12] 郭治岳,陈行,林国进,等. 运营列车作用下地铁车站与临近立交桥的振动响应特性[J]. 铁道建筑,2020,60(8): 90-94. doi: 10.3969/j.issn.1003-1995.2020.08.20

    GUO Zhiyue, CHEN Hang, LIN Guojin, et al. Vibration response characteristics of metro station and nearby overpass under the action of operating train[J]. Railway Engineering, 2020, 60(8): 90-94. doi: 10.3969/j.issn.1003-1995.2020.08.20
    [13] 兰凯,曲帅. 地铁运行所致隧道上方旅客过夜用房频域振动分析[J]. 铁道标准设计,2020,64(8): 97-102. doi: 10.13238/j.issn.1004-2954.201908090004

    LAN Kai, QU Shuai. Frequency domain analysis on train-induced vibrations of overnight passenger accommodation above subway tunnel[J]. Railway Standard Design, 2020, 64(8): 97-102. doi: 10.13238/j.issn.1004-2954.201908090004
    [14] 孟坤,崔春义,许民泽,等. 地铁运行引起的临近桥梁结构振动分析[J]. 深圳大学学报(理工版),2020,37(6): 610-616. doi: 10.3724/SP.J.1249.2020.06610

    MENG Kun, CUI Chunyi, XU Minze, et al. Vibration of the existing bridge structure induced by metro train operation[J]. Journal of Shenzhen University (Science and Engineering), 2020, 37(6): 610-616. doi: 10.3724/SP.J.1249.2020.06610
    [15] 陈行. 列车振动荷载下地下综合交通枢纽结构动力响应分析[D]. 成都: 西南交通大学, 2019.
    [16] 马龙祥,刘维宁,蒋雅君,等. 基于薄片有限元-无限元耦合模型的地铁列车振动环境影响分析[J]. 振动与冲击,2017,36(15): 111-117. doi: 10.13465/j.cnki.jvs.2017.15.017

    MA Longxiang, LIU Weining, JIANG Yajun, et al. Metro train-induced vibration influences on surrounding environments based on sliced finite element-infinite element coupled model[J]. Journal of Vibration and Shock, 2017, 36(15): 111-117. doi: 10.13465/j.cnki.jvs.2017.15.017
    [17] 刘凯. 上方铁路动载作用下隧道结构早龄期阶段动力响应研究[D]. 成都: 西南交通大学, 2019.
    [18] 刘维宁,陈嘉梁,吴宗臻,等. 地铁列车振动环境影响的深孔激振实测传递函数预测方法[J]. 土木工程学报,2017,50(9): 82-89.

    LIU Weining, CHEN Jialiang, WU Zongzhen, et al. Prediction method of measured deep-hole excitation transfer function for environmental influence of metro train-induced vibration[J]. China Civil Engineering Journal, 2017, 50(9): 82-89.
    [19] 雷晓燕,崔聪聪,张凌. 地铁列车荷载激励下综合交通枢纽车站站房结构的振动响应[J]. 中国铁道科学,2019,40(3): 119-128.

    LEI Xiaoyan, CUI Congcong, ZHANG Ling. Vibration response of station structure of comprehensive transportation hub station under subway train load excitations[J]. China Railway Science, 2019, 40(3): 119-128.
    [20] 柯仲皓. 合肥某车辆段试车线上盖建筑振动响应研究[D]. 合肥: 合肥工业大学, 2019.
    [21] 翟婉明. 车辆-轨道耦合动力学(上册)[M]. 4版. 北京: 科学出版社, 2015: 100-131.
    [22] 吴兴文. 地震条件下车辆脱轨安全性研究[D]. 成都: 西南交通大学, 2016.
    [23] 王涛, 韩煊, 赵先宇, 朱永生. FLAC3D数值模拟方法及工程应用: 深入剖析FLAC3D 5.0[M]. 北京: 中国建筑工业出版社, 2015: 302-314.
    [24] 陈育民, 徐鼎平. FLAC/FLAC3D基础与工程实例[M]. 2版. 北京: 中国水利水电出版社, 2013: 112-161.
    [25] ISHIHARA K. Soil behaviour in earthquake geotechnics[D]. Oxford: Oxford University, 1996.
    [26] HUANG Q, HUANG H W, YE B, et al. Dynamic response and long-term settlement of a metro tunnel in saturated clay due to moving train load[J]. Soils and Foundations, 2017, 57(6): 1059-1075. doi: 10.1016/j.sandf.2017.08.031
    [27] Itasca Consulting Group, Inc. FLAC3D (version 5.0) user’s manual[M]. [S.1.]: Itasca Consulting Group, Inc., 2004: 108-116.
    [28] YAN Q X, SONG L Y, CHEN H, et al. Dynamic response of segment lining of overlapped shield tunnels under train-induced vibration loads[J]. Arabian Journal for Science and Engineering, 2018, 43(10): 5439-5455. doi: 10.1007/s13369-018-3147-9
    [29] 杨文波,邹涛,涂玖林,等. 高速列车振动荷载作用下马蹄形断面隧道动力响应特性分析[J]. 岩土力学,2019,40(9): 3635-3644. doi: 10.16285/j.rsm.2018.2286

    YANG Wenbo, ZOU Tao, TU Jiulin, et al. Analysis of dynamic response of horseshoe cross-section tunnel under vibrating load induced by high-speed train[J]. Rock and Soil Mechanics, 2019, 40(9): 3635-3644. doi: 10.16285/j.rsm.2018.2286
  • 加载中
图(12) / 表(3)
计量
  • 文章访问数:  234
  • HTML全文浏览量:  159
  • PDF下载量:  63
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-05-05
  • 修回日期:  2022-08-24
  • 网络出版日期:  2023-11-23
  • 刊出日期:  2022-09-22

目录

    /

    返回文章
    返回