Line Shape of Boundary Transition Section of Terrain Model at Bridge Sites in Complex Mountainous Areas
-
摘要:
复杂山区桥址区地形模型过渡段曲线直接影响到风洞试验或数值模拟结果的精确性,为探究桥址区地形模型边界过渡段所采用线型的合理形式,基于设置过渡段的2种思路,提出构造过渡段线型的基本原则;采用数值模拟方式对比研究3类典型过渡段线型在均匀来流流经时沿程气流分离特性、平均风速剖面、风攻角剖面及湍流动能沿程分布;分析过渡段斜率变化对流场的影响规律. 研究结果表明:平方正弦曲线在气流分离特性终同位置最大剪应力差为3.77 × 10−3 Pa,风特性过渡性能上同高度最大风速差0.09 m/s,最大湍流动能差1.46 × 10−3 J,均优于其他线型,为桥址区地形模型过渡段线型选取提供了重要参考.
Abstract:The curve of the transition section of the terrain model at bridge sites in complex mountainous areas directly affects the accuracy of the wind tunnel experiment or numerical simulation results. To study the ideal form of line shape used in the boundary transition section of the terrain model at the bridge site, the principle of constructing line shape of the transition section was put forward based on the two ideas of setting up the transition section. The numerical simulation method was used to compare the three types of typical line shapes of the transition section in terms of the flow separation characteristics, mean wind speed profiles, wind attack angle profiles, and distribution of turbulent kinetic energy along the route under the uniform flow. The influence law of the slope change of the transition section on the flow field was also explored. The results show that the sine-squared curve exhibits superior characteristics compared with other line shapes, with a maximum shear stress difference of 3.77 × 10−3 Pa at the same location in terms of flow separation characteristics, a maximum wind speed difference of 0.09 m/s in terms of transitional performance of wind, and a maximum turbulent kinetic energy difference of 1.46 × 10−3 J. These findings provide important insights for selecting the line shape of the transition section of the terrain model at bridge sites.
-
表 1 计算工况
Table 1. Working conditions for calculation
计算工况 A B C D 过渡段形式 平板参考风场 兰金物体绕流流线 双曲正切函数 平方正弦函数 表 2 网格数量
Table 2. Number of grids
万个 计算工况 A B C D 网格数 244.000 390.230 100.750 281.212 表 3 不同工况首层网格y+ 值
Table 3. y+ value of the first layer grid under different working conditions
计算工况 y+ 最大值 y+ 平均值 A 0.7615 0.5674 B 0.9946 0.5334 C 1.3259 0.5251 D 0.9808 0.5338 -
[1] 李永乐,黄旭,朱金,等. 极端天气下桥塔温致效应及抗裂性能优化[J]. 西南交通大学学报,2023,58(5): 975-984,1036.LI Yongle, HUANG Xu, ZHU Jin,et al. Thermal effects and anti-crack performance optimization of bridge pylons under extreme weather conditions[J]. Journal of Southwest Jiaotong University, 2023, 58(5): 975-984,1036. [2] 李永乐,潘俊志,遆子龙, 等. 设置分段式声屏障桥梁的涡振幅值反演方法[J]. 西南交通大学学报,2023,58(1): 183-190.LI Yongle, PAN Junzhi, TI Zilong, et al. Inversion method of vortex-induced vibration amplitude for long-span bridges with partially installed noise barrier[J]. Journal of Southwest Jiaotong University, 2023, 58(1): 183-190. [3] 李永乐,遆子龙,汪斌,等. 山区Y形河口附近桥址区地形风特性数值模拟研究[J]. 西南交通大学学报,2016,51(2): 341-348.LI Yongle, TI Zilong, WANG Bin, et al. Numerical simulation of wind characteristics over bridge site near Y-shaped river junction in mountainous area[J]. Journal of Southwest Jiaotong University, 2016, 51(2): 341-348. [4] 吴联活,张明金,李永乐,等. 复杂山区地形桥址区风特性的数值模拟[J]. 西南交通大学学报,2019,54(5): 915-922.WU Lianhuo, ZHANG Mingjin, LI Yongle, et al. Numerical simulation of wind characteristics at bridge sites in complex mountainous terrains[J]. Journal of Southwest Jiaotong University, 2019, 54(5): 915-922. [5] 张明金,邢龙飞,蒋帆影,等. 漏斗型峡谷桥址区平均风特性的数值模拟[J]. 西南交通大学学报,2023,58(2): 381-387.ZHANG Mingjin, XING Longfei, JIANG Fanying, et al. Numerical simulation of mean wind characteristics at bridge site in funnel-shaped canyon terrain[J]. Journal of Southwest Jiaotong University, 2023, 58(2): 381-387. [6] ZHANG M J, LI Y L, WANG B, et al. Numerical simulation of wind characteristics at bridge site considering thermal effects[J]. Advances in Structural Engineering, 2018, 21(9): 1313-1326. doi: 10.1177/1369433217742524 [7] WANG L, CHEN X X, CHEN H. Research on wind barrier of canyon bridge-tunnel junction based on wind characteristics[J]. Advances in Structural Engineering, 2021, 24(5): 870-883. doi: 10.1177/1369433220971730 [8] CHEN X Y, LIU Z W, WANG X G, et al. Experimental and numerical investigation of wind characteristics over mountainous valley bridge site considering improved boundary transition sections[J]. Applied Sciences, 2020, 10(3): 751-773. doi: 10.3390/app10030751 [9] 李永乐,胡朋,蔡宪棠,等. 紧邻高陡山体桥址区风特性数值模拟研究[J]. 空气动力学学报,2011,29(6): 770-776.LI Yongle, HU Peng, CAI Xiantang, et al. Numerical simulation of wind characteristics above bridge site adjacent a high-steep mountain[J]. Acta Aerodynamica Sinica, 2011, 29(6): 770-776. [10] 沈炼,韩艳,蔡春声,等. 山区峡谷桥址处风场实测与数值模拟研究[J]. 湖南大学学报(自然科学版),2016,43(7): 16-24.SHEN Lian, HAN Yan, CAI Chunsheng, et al. Experiment and numerical simulation for wind field of a long-span suspension bridge located in mountainous canyon[J]. Journal of Hunan University (Natural Sciences), 2016, 43(7): 16-24. [11] 洪新民,郭文华,熊安平. 山区峡谷风场分布特性及地形影响的数值模拟[J]. 长安大学学报(自然科学版),2017,37(5): 56-64.HONG Xinmin, GUO Wenhua, XIONG Anping. Numerical simulation of distribution characteristic of wind fields and terrain’s influence in mountain canyon[J]. Journal of Chang’an University (Natural Science Edition), 2017, 37(5): 56-64. [12] 胡朋,李永乐,廖海黎. 山区峡谷桥址区地形模型边界过渡段形式研究[J]. 空气动力学学报,2013,31(2): 231-238.HU Peng, LI Yongle, LIAO Haili. Shape of boundary transition section for mountains-gorge bridge site terrain model[J]. Acta Aerodynamica Sinica, 2013, 31(2): 231-238. [13] 靖洪淼,廖海黎,马存明,等. 风场特性测量的地形模型边界过渡形式研究[J]. 振动与冲击,2020,39(8): 178-185,207.JING Hongmiao, LIAO Haili, MA Cunming, et al. A study on boundary transition of a terrain model for wind field characteristics measurement[J]. Journal of Vibration and Shock, 2020, 39(8): 178-185,207. [14] UCHIDA T, OHYA Y J. Large-eddy simulation of turbulent airflow over complex terrain[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2003, 91(1/2): 219-229.