Dynamic Response of Cable-Stayed Bridge and Trains on Bridge Under Cable Breaking Conditions
-
摘要:
为研究大跨度公铁两用斜拉桥断索状态下,风、列车动力作用时的动力响应特性,以实际斜拉桥为研究对象建立全桥3维计算模型. 使用非线性隐式动力时程算法,分析突然断索时全桥结构的动力响应;研究列车-桥梁耦合作用下,不同突然断索工况发生时,桥梁结构与桥上行驶列车的动力响应;讨论在少量拉索断索后,结构处于静力平衡状态时,风-列车-桥梁耦合动力作用下,桥梁结构与桥上行驶列车的动力响应;使用非线性显式有限元动力时程算法,研究拉索在横向风作用下的断裂下坠状态. 研究结果表明:大跨度公铁两用斜拉桥具有较高的安全冗余,跨中双侧较长拉索超过12根断裂后才可能导致连续断索垮塌;单根拉索断裂时其余拉索最大动应力增幅约为100 MPa,对桥梁结构安全性影响较小;列车在桥上行驶时,若发生突然断索,会导致列车加速度响应发生较为明显变化,各个工况计算结果中,最大约为1.5 m/s2;单根最长拉索断裂后,列车过桥竖向位移响应增加小于0.01 m,对桥梁刚度影响较小,可保持列车通行;当最长拉索发生断裂时,若横向风速达到30 m/s,可能使断裂拉索坠落在主梁上层车道内,入侵距离约为5 m,影响上层车道的通行安全.
Abstract:In order to study the dynamic response characteristics of long-span highway-railway cable-stayed bridges with broken cables under the dynamic actions of wind and train, an actual cable-stayed bridge was taken as the research object, and a 3D computational model of the whole bridge was established. The nonlinear implicit dynamic time history algorithm was used to analyze the dynamic response of the whole bridge in the case of sudden cable breaking. The dynamic response of the bridge structure and the train running on the bridge under different sudden cable breaking conditions was studied under the coupling effect of the train and bridge. In addition, the dynamic response of the bridge structure and the train running on the bridge under the coupling effect of wind, train, and bridge was discussed when the structure was in a static equilibrium state after a few cables were broken. The nonlinear explicit dynamic time history algorithm was used to study the cable breaking and falling state under the action of lateral wind. The results show that long-span highway-railway cable-stayed bridges have high safety redundancy, and it is only possible for continuous cable breaking and collapse to occur when more than 12 longer cables of the mid-span break. When a single cable breaks, the maximum increase in dynamic stress for the remaining cables is approximately 100 MPa, which has a minor impact on the safety of the bridge structure. When a sudden cable breaking occurs while a train is running on the bridge, it will cause a noticeable change in the acceleration response of the train, or in other words, the calculated maximum acceleration under various conditions is approximately 1.5 m/s2. After the breaking of a single longest cable, the vertical displacement response of the train running on the bridge increases by less than 0.01 m, resulting in a small impact on the stiffness of the bridge, and the bridge can still accommodate train traffic. When the longest cable breaks, if the lateral wind speed reaches 30 m/s, it may cause the broken cable to fall into the upper deck lane of the girder, invading a distance of approximately 5 m, which affects the safety of traffic on the upper deck lane.
-
Key words:
- bridge engineering /
- cable-stayed bridge /
- cable breaking /
- finite element method /
- dynamic response
-
-
[1] 王力力,易伟建. 斜拉索的腐蚀案例与分析[J]. 中南公路工程,2007,32(1): 93-98.WANG Lili, YI Weijian. Cases analysis on cable corrosion of cable-stayed bridges[J]. Journal of Central South Highway Engineering, 2007, 32(1): 93-98. [2] 卫星,强士中. 大跨独塔斜拉桥拉索梁端锚固区抗疲劳性能[J]. 西南交通大学学报,2011,46(6): 940-945. doi: 10.3969/j.issn.0258-2724.2011.06.009WEI Xing, QIANG Shizhong. Fatigue performance of anchorage zone for long-span single pylon cable-stayed bridge[J]. Journal of Southwest Jiaotong University, 2011, 46(6): 940-945. doi: 10.3969/j.issn.0258-2724.2011.06.009 [3] 张岗,贺拴海,宋超杰,等. 钢结构桥梁抗火研究综述[J]. 中国公路学报,2021,34(1): 1-11. doi: 10.3969/j.issn.1001-7372.2021.01.001ZHANG Gang, HE Shuanhai, SONG Chaojie, et al. Review on fire resistance of steel structural bridge girders[J]. China Journal of Highway and Transport, 2021, 34(1): 1-11. doi: 10.3969/j.issn.1001-7372.2021.01.001 [4] 沈达佳,胡志坚,李杨. 近场爆炸时斜拉索抗爆性能分析[J]. 振动与冲击,2020,39(21): 250-257. doi: 10.13465/j.cnki.jvs.2020.21.033SHEN Dajia, HU Zhijian, LI Yang. Anti-explosion performance of stay cable under near field blast load[J]. Journal of Vibration and Shock, 2020, 39(21): 250-257. doi: 10.13465/j.cnki.jvs.2020.21.033 [5] 王礼立,陈国虞,杨黎明. 船桥碰撞过程引发的冲击动力学论题[J]. 振动与冲击,2015,34(3): 14-22. doi: 10.13465/j.cnki.jvs.2015.03.003WANG Lili, CHEN Guoyu, YANG Liming. Impact dynamics topics motivated by ship-bridge collision process[J]. Journal of Vibration and Shock, 2015, 34(3): 14-22. doi: 10.13465/j.cnki.jvs.2015.03.003 [6] Post Tensioning Institute. Recommendations for stay cable design, testing and installation[S]. Fifth Edition. [S.l.]: Cable-Stayed Bridges Committee, 2007. [7] 吕文高. 拉索锈蚀对极端作用下大跨斜拉桥失效行为的非线性影响分析[D]. 大连: 大连理工大学, 2018. [8] WOLFF M, STAROSSEK U. Cable loss and progressive collapse in cable-stayed bridges[J]. Bridge Structures, 2009, 5(1): 17-28. doi: 10.1080/15732480902775615 [9] MOZOS C M, APARICIO A C. Parametric study on the dynamic response of cable stayed bridges to the sudden failure of a stay, part Ⅰ: bending moment acting on the deck[J]. Engineering Structures, 2010, 32(10): 3288-3300. doi: 10.1016/j.engstruct.2010.07.003 [10] MOZOS C M, APARICIO A C. Parametric study on the dynamic response of cable stayed bridges to the sudden failure of a stay, part Ⅱ: bending moment acting on the pylons and stress on the stays[J]. Engineering Structures, 2010, 32(10): 3301-3312. doi: 10.1016/j.engstruct.2010.07.002 [11] CAI J G, XU Y X, ZHUANG L P, et al. Comparison of various procedures for progressive collapse analysis of cable-stayed bridges[J]. Journal of Zhejiang University SCIENCE A, 2012, 13(5): 323-334. doi: 10.1631/jzus.A1100296 [12] ZHOU Y F, CHEN S R. Numerical investigation of cable breakage events on long-span cable-stayed bridges under stochastic traffic and wind[J]. Engineering Structures, 2015, 105: 299-315. doi: 10.1016/j.engstruct.2015.07.009 [13] ZHOU Y F, CHEN S R. Framework of nonlinear dynamic simulation of long-span cable-stayed bridge and traffic system subjected to cable-loss incidents[J]. Journal of Structural Engineering, 2016, 142(3): 04015160.1-04015160.40. [14] HOANG V, KIYOMIYA O, AN T. Experimental and dynamic response analysis of cable-stayed bridge due to sudden cable loss[J]. Journal of Structural Engineering, 2016, 62(A): 50-60. [15] 颜东煌,郭鑫. 斜拉索损伤对在役斜拉桥体系可靠度的影响[J]. 中南大学学报(自然科学版),2020,51(1): 213-220.YAN Donghuang, GUO Xin. Influence of damage of stay cables on system reliability of in-service cable-stayed bridges[J]. Journal of Central South University (Science and Technology), 2020, 51(1): 213-220. [16] 张羽,方志,卢江波,等. 大跨混凝土斜拉桥施工过程中结构的断索动力响应[J]. 振动与冲击,2021,40(5): 237-246. doi: 10.13465/j.cnki.jvs.2021.05.031ZHANG Yu, FANG Zhi, LU Jiangbo, et al. Broken cable-induced dynamic response of long-span concrete cable stayed bridge during construction[J]. Journal of Vibration and Shock, 2021, 40(5): 237-246. doi: 10.13465/j.cnki.jvs.2021.05.031 [17] 刘德军. 风—列车—线路—桥梁系统耦合振动研究[D]. 成都: 西南交通大学, 2010. [18] 李永乐. 风—车—桥系统非线性空间耦合振动研究[D]. 成都: 西南交通大学, 2003. [19] 王涛,刘德贵,胡安杰. 基于流动坐标系的3维空间动力非线性有限元方法[J]. 振动与冲击,2018,37(16): 14-23,37. doi: 10.13465/j.cnki.jvs.2018.16.003WANG Tao, LIU Degui, HU Anjie. A nonlinear dynamic finite element method in 3D space based on the co-rotational formulation[J]. Journal of Vibration and Shock, 2018, 37(16): 14-23,37. doi: 10.13465/j.cnki.jvs.2018.16.003 [20] 陈冲. 基于向量式有限元的索杆结构精细化分析和倒塌破坏研究[D]. 杭州: 浙江大学, 2017. [21] 王涛,刘德贵,黄辉. 风、列车作用下大跨度斜拉桥索-梁相关振动研究[J]. 中国公路学报,2021,34(4): 105-118. doi: 10.3969/j.issn.1001-7372.2021.04.009WANG Tao, LIU Degui, HUANG Hui. Investigation of cable-beam-related vibration in long-span cable-stayed bridge based on wind and train effects[J]. China Journal of Highway and Transport, 2021, 34(4): 105-118. doi: 10.3969/j.issn.1001-7372.2021.04.009 [22] 王涛,胡宇鹏,张兴标,等. 基于有限元-向量式有限元的斜拉桥非线性振动计算方法[J]. 振动与冲击,2022,41(3): 129-138,215.WANG Tao, HU Yupeng, ZHANG Xingbiao, et al. Nonlinear vibration calculation method for cable-stayed bridge based on finite element & vector form finite element method[J]. Journal of Vibration and Shock, 2022, 41(3): 129-138,215. [23] 崔圣爱. 基于多体系统动力学和有限元法的车桥耦合振动精细化仿真研究[D]. 成都: 西南交通大学, 2009.