• ISSN 0258-2724
  • CN 51-1277/U
  • EI Compendex
  • Scopus 收录
  • 全国中文核心期刊
  • 中国科技论文统计源期刊
  • 中国科学引文数据库来源期刊

断索状态下斜拉桥以及桥上列车的动力响应

王涛 张兴标 王路

王涛, 张兴标, 王路. 断索状态下斜拉桥以及桥上列车的动力响应[J]. 西南交通大学学报, 2024, 59(3): 627-636. doi: 10.3969/j.issn.0258-2724.20220266
引用本文: 王涛, 张兴标, 王路. 断索状态下斜拉桥以及桥上列车的动力响应[J]. 西南交通大学学报, 2024, 59(3): 627-636. doi: 10.3969/j.issn.0258-2724.20220266
WANG Tao, ZHANG Xingbiao, WANG Lu. Dynamic Response of Cable-Stayed Bridge and Trains on Bridge Under Cable Breaking Conditions[J]. Journal of Southwest Jiaotong University, 2024, 59(3): 627-636. doi: 10.3969/j.issn.0258-2724.20220266
Citation: WANG Tao, ZHANG Xingbiao, WANG Lu. Dynamic Response of Cable-Stayed Bridge and Trains on Bridge Under Cable Breaking Conditions[J]. Journal of Southwest Jiaotong University, 2024, 59(3): 627-636. doi: 10.3969/j.issn.0258-2724.20220266

断索状态下斜拉桥以及桥上列车的动力响应

doi: 10.3969/j.issn.0258-2724.20220266
基金项目: 国家自然科学基金(51708468)
详细信息
    通讯作者:

    王涛(1983—),男,副教授,博士,研究方向为桥梁结构动力学,E-mail:7015294@qq.com

  • 中图分类号: U448.27

Dynamic Response of Cable-Stayed Bridge and Trains on Bridge Under Cable Breaking Conditions

  • 摘要:

    为研究大跨度公铁两用斜拉桥断索状态下,风、列车动力作用时的动力响应特性,以实际斜拉桥为研究对象建立全桥3维计算模型. 使用非线性隐式动力时程算法,分析突然断索时全桥结构的动力响应;研究列车-桥梁耦合作用下,不同突然断索工况发生时,桥梁结构与桥上行驶列车的动力响应;讨论在少量拉索断索后,结构处于静力平衡状态时,风-列车-桥梁耦合动力作用下,桥梁结构与桥上行驶列车的动力响应;使用非线性显式有限元动力时程算法,研究拉索在横向风作用下的断裂下坠状态. 研究结果表明:大跨度公铁两用斜拉桥具有较高的安全冗余,跨中双侧较长拉索超过12根断裂后才可能导致连续断索垮塌;单根拉索断裂时其余拉索最大动应力增幅约为100 MPa,对桥梁结构安全性影响较小;列车在桥上行驶时,若发生突然断索,会导致列车加速度响应发生较为明显变化,各个工况计算结果中,最大约为1.5 m/s2;单根最长拉索断裂后,列车过桥竖向位移响应增加小于0.01 m,对桥梁刚度影响较小,可保持列车通行;当最长拉索发生断裂时,若横向风速达到30 m/s,可能使断裂拉索坠落在主梁上层车道内,入侵距离约为5 m,影响上层车道的通行安全.

     

  • 图 1  平潭大桥3维有限元模型(拉索使用分段模型)

    Figure 1.  3D finite element model of Pingtan Bridge (segmented cable model was used)

    图 2  右侧34# 拉索断裂后各个节点振动时程

    Figure 2.  Vibration time history diagram of each node after the right-side cable 34# was broken

    图 3  右侧拉索34# 断索后第11 s全桥振动形状(主梁位移放大200倍)

    Figure 3.  Vibration shape of the whole bridge after the right-side cable 34# was broken at 11 s (main girder displacement amplification of 200 times)

    图 4  斜拉桥右侧34# 拉索断索作用下各个拉索的应力变化

    Figure 4.  Stress variation of each cable of cable-stayed bridge under the action of broken right-side cable 34#

    图 5  右侧32#~37# 拉索断裂后剩余各个拉索最大应力

    Figure 5.  Maximum stress of each cable after right-side cables 32#–37# were broken

    图 6  工况1中拉索发生断裂时主梁与列车1、4、8车厢动力响应

    Figure 6.  Dynamic responses of main girder and carriages 1, 4, and 8 of train when cable breaks under condition 1

    图 7  工况2、3、4、5中列车1、4、8车厢动力响应以及各个拉索最大应力

    Figure 7.  Dynamic responses of carriages 1, 4, and 8 of train under working conditions 2, 3, 4, and 5 and the maximum cable stress

    图 8  工况2中断索位置主梁下层右侧节点与列车动力响应

    Figure 8.  Dynamic responses of lower deck right node of the main girder and train at cable breaking position under working condition 2

    图 9  右侧34# 拉索断裂、不断裂列车过桥主梁跨中1/2点动力响应

    Figure 9.  Dynamic responses of 1/2 point of main girder of train running on bridge under the condition of normal and broken right side cable 34#

    图 10  右侧34# 拉索断裂后,风-车桥耦合动力作用下,斜拉桥主梁与列车动力响应

    Figure 10.  After cable 34# on the right side was broken, the dynamic responses of main girder and train of cable-stayed bridge under wind-vehicle-bridge coupling dynamic action

    图 11  横向风场作用下右侧34# 拉索断裂下坠运动轨迹

    Figure 11.  Breaking and falling motion trajectory of right-side cable 34# under lateral wind field

    图 12  横向风速30.0 m/s作用拉索断裂下坠第6 s位置(考虑拉索与主梁碰撞)

    Figure 12.  Position of cable after breaking and falling at 6 s under the action of lateral wind speed of 30.0 m/s (considering the collision of cable with main girder)

  • [1] 王力力,易伟建. 斜拉索的腐蚀案例与分析[J]. 中南公路工程,2007,32(1): 93-98.

    WANG Lili, YI Weijian. Cases analysis on cable corrosion of cable-stayed bridges[J]. Journal of Central South Highway Engineering, 2007, 32(1): 93-98.
    [2] 卫星,强士中. 大跨独塔斜拉桥拉索梁端锚固区抗疲劳性能[J]. 西南交通大学学报,2011,46(6): 940-945. doi: 10.3969/j.issn.0258-2724.2011.06.009

    WEI Xing, QIANG Shizhong. Fatigue performance of anchorage zone for long-span single pylon cable-stayed bridge[J]. Journal of Southwest Jiaotong University, 2011, 46(6): 940-945. doi: 10.3969/j.issn.0258-2724.2011.06.009
    [3] 张岗,贺拴海,宋超杰,等. 钢结构桥梁抗火研究综述[J]. 中国公路学报,2021,34(1): 1-11. doi: 10.3969/j.issn.1001-7372.2021.01.001

    ZHANG Gang, HE Shuanhai, SONG Chaojie, et al. Review on fire resistance of steel structural bridge girders[J]. China Journal of Highway and Transport, 2021, 34(1): 1-11. doi: 10.3969/j.issn.1001-7372.2021.01.001
    [4] 沈达佳,胡志坚,李杨. 近场爆炸时斜拉索抗爆性能分析[J]. 振动与冲击,2020,39(21): 250-257. doi: 10.13465/j.cnki.jvs.2020.21.033

    SHEN Dajia, HU Zhijian, LI Yang. Anti-explosion performance of stay cable under near field blast load[J]. Journal of Vibration and Shock, 2020, 39(21): 250-257. doi: 10.13465/j.cnki.jvs.2020.21.033
    [5] 王礼立,陈国虞,杨黎明. 船桥碰撞过程引发的冲击动力学论题[J]. 振动与冲击,2015,34(3): 14-22. doi: 10.13465/j.cnki.jvs.2015.03.003

    WANG Lili, CHEN Guoyu, YANG Liming. Impact dynamics topics motivated by ship-bridge collision process[J]. Journal of Vibration and Shock, 2015, 34(3): 14-22. doi: 10.13465/j.cnki.jvs.2015.03.003
    [6] Post Tensioning Institute. Recommendations for stay cable design, testing and installation[S]. Fifth Edition. [S.l.]: Cable-Stayed Bridges Committee, 2007.
    [7] 吕文高. 拉索锈蚀对极端作用下大跨斜拉桥失效行为的非线性影响分析[D]. 大连: 大连理工大学, 2018.
    [8] WOLFF M, STAROSSEK U. Cable loss and progressive collapse in cable-stayed bridges[J]. Bridge Structures, 2009, 5(1): 17-28. doi: 10.1080/15732480902775615
    [9] MOZOS C M, APARICIO A C. Parametric study on the dynamic response of cable stayed bridges to the sudden failure of a stay, part Ⅰ: bending moment acting on the deck[J]. Engineering Structures, 2010, 32(10): 3288-3300. doi: 10.1016/j.engstruct.2010.07.003
    [10] MOZOS C M, APARICIO A C. Parametric study on the dynamic response of cable stayed bridges to the sudden failure of a stay, part Ⅱ: bending moment acting on the pylons and stress on the stays[J]. Engineering Structures, 2010, 32(10): 3301-3312. doi: 10.1016/j.engstruct.2010.07.002
    [11] CAI J G, XU Y X, ZHUANG L P, et al. Comparison of various procedures for progressive collapse analysis of cable-stayed bridges[J]. Journal of Zhejiang University SCIENCE A, 2012, 13(5): 323-334. doi: 10.1631/jzus.A1100296
    [12] ZHOU Y F, CHEN S R. Numerical investigation of cable breakage events on long-span cable-stayed bridges under stochastic traffic and wind[J]. Engineering Structures, 2015, 105: 299-315. doi: 10.1016/j.engstruct.2015.07.009
    [13] ZHOU Y F, CHEN S R. Framework of nonlinear dynamic simulation of long-span cable-stayed bridge and traffic system subjected to cable-loss incidents[J]. Journal of Structural Engineering, 2016, 142(3): 04015160.1-04015160.40.
    [14] HOANG V, KIYOMIYA O, AN T. Experimental and dynamic response analysis of cable-stayed bridge due to sudden cable loss[J]. Journal of Structural Engineering, 2016, 62(A): 50-60.
    [15] 颜东煌,郭鑫. 斜拉索损伤对在役斜拉桥体系可靠度的影响[J]. 中南大学学报(自然科学版),2020,51(1): 213-220.

    YAN Donghuang, GUO Xin. Influence of damage of stay cables on system reliability of in-service cable-stayed bridges[J]. Journal of Central South University (Science and Technology), 2020, 51(1): 213-220.
    [16] 张羽,方志,卢江波,等. 大跨混凝土斜拉桥施工过程中结构的断索动力响应[J]. 振动与冲击,2021,40(5): 237-246. doi: 10.13465/j.cnki.jvs.2021.05.031

    ZHANG Yu, FANG Zhi, LU Jiangbo, et al. Broken cable-induced dynamic response of long-span concrete cable stayed bridge during construction[J]. Journal of Vibration and Shock, 2021, 40(5): 237-246. doi: 10.13465/j.cnki.jvs.2021.05.031
    [17] 刘德军. 风—列车—线路—桥梁系统耦合振动研究[D]. 成都: 西南交通大学, 2010.
    [18] 李永乐. 风—车—桥系统非线性空间耦合振动研究[D]. 成都: 西南交通大学, 2003.
    [19] 王涛,刘德贵,胡安杰. 基于流动坐标系的3维空间动力非线性有限元方法[J]. 振动与冲击,2018,37(16): 14-23,37. doi: 10.13465/j.cnki.jvs.2018.16.003

    WANG Tao, LIU Degui, HU Anjie. A nonlinear dynamic finite element method in 3D space based on the co-rotational formulation[J]. Journal of Vibration and Shock, 2018, 37(16): 14-23,37. doi: 10.13465/j.cnki.jvs.2018.16.003
    [20] 陈冲. 基于向量式有限元的索杆结构精细化分析和倒塌破坏研究[D]. 杭州: 浙江大学, 2017.
    [21] 王涛,刘德贵,黄辉. 风、列车作用下大跨度斜拉桥索-梁相关振动研究[J]. 中国公路学报,2021,34(4): 105-118. doi: 10.3969/j.issn.1001-7372.2021.04.009

    WANG Tao, LIU Degui, HUANG Hui. Investigation of cable-beam-related vibration in long-span cable-stayed bridge based on wind and train effects[J]. China Journal of Highway and Transport, 2021, 34(4): 105-118. doi: 10.3969/j.issn.1001-7372.2021.04.009
    [22] 王涛,胡宇鹏,张兴标,等. 基于有限元-向量式有限元的斜拉桥非线性振动计算方法[J]. 振动与冲击,2022,41(3): 129-138,215.

    WANG Tao, HU Yupeng, ZHANG Xingbiao, et al. Nonlinear vibration calculation method for cable-stayed bridge based on finite element & vector form finite element method[J]. Journal of Vibration and Shock, 2022, 41(3): 129-138,215.
    [23] 崔圣爱. 基于多体系统动力学和有限元法的车桥耦合振动精细化仿真研究[D]. 成都: 西南交通大学, 2009.
  • 加载中
图(12)
计量
  • 文章访问数:  236
  • HTML全文浏览量:  72
  • PDF下载量:  62
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-04-19
  • 修回日期:  2022-06-05
  • 网络出版日期:  2023-11-22
  • 刊出日期:  2022-06-09

目录

    /

    返回文章
    返回