• ISSN 0258-2724
  • CN 51-1277/U
  • EI Compendex
  • Scopus 收录
  • 全国中文核心期刊
  • 中国科技论文统计源期刊
  • 中国科学引文数据库来源期刊

基于极大化思想的无人机安全避障域识别算法

王家亮 董楷 顾兆军 陈辉 韩强

王家亮, 董楷, 顾兆军, 陈辉, 韩强. 基于极大化思想的无人机安全避障域识别算法[J]. 西南交通大学学报, 2023, 58(6): 1267-1276. doi: 10.3969/j.issn.0258-2724.20220262
引用本文: 王家亮, 董楷, 顾兆军, 陈辉, 韩强. 基于极大化思想的无人机安全避障域识别算法[J]. 西南交通大学学报, 2023, 58(6): 1267-1276. doi: 10.3969/j.issn.0258-2724.20220262
WANG Jialiang, DONG Kai, GU Zhaojun, CHEN Hui, HAN Qiang. Recognition Algorithm of Safe Obstacle Avoidance Domain for UAVs Based on Maximization Idea[J]. Journal of Southwest Jiaotong University, 2023, 58(6): 1267-1276. doi: 10.3969/j.issn.0258-2724.20220262
Citation: WANG Jialiang, DONG Kai, GU Zhaojun, CHEN Hui, HAN Qiang. Recognition Algorithm of Safe Obstacle Avoidance Domain for UAVs Based on Maximization Idea[J]. Journal of Southwest Jiaotong University, 2023, 58(6): 1267-1276. doi: 10.3969/j.issn.0258-2724.20220262

基于极大化思想的无人机安全避障域识别算法

doi: 10.3969/j.issn.0258-2724.20220262
基金项目: 天津市教委科研计划(2020KJ026)
详细信息
    作者简介:

    王家亮(1983—),男,讲师,博士,研究方向为民航信息系统、嵌入式系统,E-mail:jl-wang@cauc.edu.cn

    通讯作者:

    顾兆军(1966—),男,教授,博士,研究方向为网络与信息安全、民航信息系统,E-mail:zjgu@cauc.edu.cn

  • 中图分类号: TP391.41;V279;V249

Recognition Algorithm of Safe Obstacle Avoidance Domain for UAVs Based on Maximization Idea

  • 摘要:

    为提高四轴飞行器避障的准确性与实时性,提出一种结合LK (Lucas-Kanade)光流法和极大化思想的四轴飞行器避障算法. 首先,对四轴飞行器采集的视频流进行预处理,得到图像帧;其次,通过LK光流法剔除图像帧中光流小于阈值的角点,采用基于角点距离的聚类算法对角点进行分组,并计算出每组角点的外包轮廓;然后,利用基于极大化思想的安全避障域算法计算最优通行区域,进一步根据避障域求得偏差数据;最后,将偏差数据输入比例微分(PD)控制器得到控制信息,并发送控制指令使四轴飞行器及时调整飞行姿态,完成避障飞行. 通过特洛(Tello)四轴飞行器进行不同场景的实验表明,本文所提出的算法计算每帧图像最优安全避障域平均所需时间为0.17 s,既满足无人机避障实时性要求,又解决了识别障碍物区域与计算安全避障域问题.

     

  • 图 1  四轴飞行器动力模型

    Figure 1.  Dynamic model of quad-rotor helicopter

    图 2  障碍物识别流程

    Figure 2.  Flow chart of obstacle recognition

    图 3  障碍物角点识别效果

    Figure 3.  Effect of obstacle corner point recognition

    图 4  障碍物轮廓识别效果

    Figure 4.  Recognition effect of obstacle contour

    图 5  系统结构

    Figure 5.  System structure

    图 6  标记障碍物矩形

    Figure 6.  Marked obstacle rectangle

    图 7  通行区域分析

    Figure 7.  Passing domain analysis

    图 8  通行区域分析结果

    Figure 8.  Passing domain analysis result

    图 9  PD控制避障示意

    Figure 9.  Obstacle avoidance by PD control

    图 10  实验场景

    Figure 10.  Experimental scenes

    图 11  躲避多组障碍物实验(实验1)

    Figure 11.  Experiment of avoiding multiple groups of obstacles (experiment 1)

    图 12  四轴飞行器数据结果(实验1)

    Figure 12.  Quad-rotor helicopter data results (experiment 1)

    图 13  复杂障碍物避障实验(实验2)

    Figure 13.  Experiment of avoiding complex obstacles (experiment 2)

    图 14  复杂障碍物避障实验(实验3)

    Figure 14.  Experiment of avoiding complex obstacles (experiment 3)

    图 15  处理时间对比

    Figure 15.  Comparison of processing time

    图 16  通行区域面积对比

    Figure 16.  Comparison of passing domain area

  • [1] 林立雄,何洪钦,何炳蔚,等. 基于改进人工势场模型的无人机局部避障方法[J]. 华中科技大学学报(自然科学版),2021,49(8): 86-91. doi: 10.13245/j.hust.210816

    LIN Lixiong, HE Hongqin, HE Bingwei, et al. Local obstacle avoidance method for unmanned aerial vehicle based on improved artificial potential field[J]. Journal of Huazhong University of Science and Technology (Natural Science Edition), 2021, 49(8): 86-91. doi: 10.13245/j.hust.210816
    [2] 王梓豪,朱波,王奇,等. 基于视觉辅助导航的小旋翼机群编队穿越障碍技术[J]. 电子科技大学学报,2021,50(3): 391-397. doi: 10.12178/1001-0548.2021025

    WANG Zihao, ZHU Bo, WANG Qi, et al. Heterogeneous micro air vehicles formation crossing obstacles based on vision-aided navigation[J]. Journal of University of Electronic Science and Technology of China, 2021, 50(3): 391-397. doi: 10.12178/1001-0548.2021025
    [3] WANG F, CUI J Q, CHEN B M, et al. A comprehensive UAV indoor navigation system based on vision optical flow and laser Fast SLAM[J]. Acta Automatica Sinica, 2013, 39(11): 1889-1899.
    [4] 张小东,郝向阳,孙国鹏,等. 旋翼无人机单目视觉障碍物径向光流检测法[J]. 测绘学报,2017,46(9): 1107-1115. doi: 10.11947/j.AGCS.2017.20160510

    ZHANG Xiaodong, HAO Xiangyang, SUN Guopeng, et al. Monocular vision obstacle detection method based on radial optical flow for rotor UAV[J]. Acta Geodaetica et Cartographica Sinica, 2017, 46(9): 1107-1115. doi: 10.11947/j.AGCS.2017.20160510
    [5] FU Q, WANG J, GONG L, et al. Obstacle avoidance of flapping-wing air vehicles based on optical flow and fuzzy control[J]. Transactions of Nanjing University of Aeronautics and Astronautics, 2021, 38(2): 206-215.
    [6] HUANG L, WU G P, LIU J Y, et al. Obstacle distance measurement based on binocular vision for high-voltage transmission lines using a cable inspection robot[J]. Science Progress, 2020, 103(3): 36850420936910.1-36850420936910.35.
    [7] LIN H Y, PENG X Z. Autonomous quadrotor navigation with vision based obstacle avoidance and path planning[J]. IEEE Access, 2021, 9: 102450-102459. doi: 10.1109/ACCESS.2021.3097945
    [8] DAI X, MAO Y X, HUANG T P, et al. Automatic obstacle avoidance of quadrotor UAV via CNN-based learning[J]. Neurocomputing, 2020, 402: 346-358. doi: 10.1016/j.neucom.2020.04.020
    [9] 张午阳,章伟,宋芳,等. 基于深度学习的四旋翼无人机单目视觉避障方法[J]. 计算机应用,2019,39(4): 1001-1005. doi: 10.11772/j.issn.1001-9081.2018091952

    ZHANG Wuyang, ZHANG Wei, SONG Fang, et al. Monocular vision obstacle avoidance method for quadcopter based on deep learning[J]. Journal of Computer Applications, 2019, 39(4): 1001-1005. doi: 10.11772/j.issn.1001-9081.2018091952
    [10] FU Q, YANG Y H, CHEN X Y, et al. Vision-based obstacle avoidance for flapping-wing aerial vehicles[J]. Science China Information Sciences, 2020, 63(7): 170208.1-170208.3.
    [11] 关震宇,杨东晓,李杰,等. 基于Dubins路径的无人机避障规划算法[J]. 北京理工大学学报,2014,34(6): 570-575. doi: 10.15918/j.tbit1001-0645.2014.06.008

    GUAN Zhenyu, YANG Dongxiao, LI Jie, et al. Obstacle avoidance planning algorithm for UAV based on Dubins path[J]. Transactions of Beijing Institute of Technology, 2014, 34(6): 570-575. doi: 10.15918/j.tbit1001-0645.2014.06.008
    [12] 李樾,韩维,陈清阳,等. 基于改进的速度障碍法的有人/无人机协同系统三维实时避障方法[J]. 西北工业大学学报,2020,38(2): 309-318. doi: 10.3969/j.issn.1000-2758.2020.02.011

    LI Yue, HAN Wei, CHEN Qingyang, et al. Real-time obstacle avoidance for manned/unmanned aircraft cooperative system based on improved velocity obstacle method[J]. Journal of Northwestern Polytechnical University, 2020, 38(2): 309-318. doi: 10.3969/j.issn.1000-2758.2020.02.011
    [13] 郭行,符文星,付斌,等. 复杂动态环境下无人飞行器动态避障近似最优轨迹规划[J]. 宇航学报,2019,40(2): 182-190. doi: 10.3873/j.issn.1000-1328.2019.02.007

    GUO Hang, FU Wenxing, FU Bin, et al. Near optimal dynamic obstacle avoidance trajectory programming for unmanned aerial vehicles[J]. Journal of Astronautics, 2019, 40(2): 182-190. doi: 10.3873/j.issn.1000-1328.2019.02.007
    [14] HUANG X, DONG X Y, MA J, et al. The improved A* obstacle avoidance algorithm for the plant protection UAV with millimeter wave radar and monocular camera data fusion[J]. Remote Sensing, 2021, 13(17): 3364.1-3364.22.
    [15] LEE H Y, HO H W, ZHOU Y. Deep learning-based monocular obstacle avoidance for unmanned aerial vehicle navigation in tree plantations[J]. Journal of Intelligent & Robotic Systems, 2020, 101(1): 1-18.
    [16] OU J J, GUO X, ZHU M, et al. Autonomous quadrotor obstacle avoidance based on dueling double deep recurrent Q-learning with monocular vision[J]. Neurocomputing, 2021, 441: 300-310. doi: 10.1016/j.neucom.2021.02.017
    [17] 张香竹,张立家,宋逸凡,等. 基于深度学习的无人机单目视觉避障算法[J]. 华南理工大学学报(自然科学版),2022,50(1): 101-108,131.

    ZHANG Xiangzhu, ZHANG Lijia, SONG Yifan, et al. Obstacle avoidance algorithm for unmanned aerial vehicle vision based on deep learning[J]. Journal of South China University of Technology (Natural Science Edition), 2022, 50(1): 101-108,131.
    [18] WANG D S, LI W, LIU X G, et al. UAV environmental perception and autonomous obstacle avoidance: a deep learning and depth camera combined solution[J]. Computers and Electronics in Agriculture, 2020, 175: 105523.1-105523.11.
    [19] 王知昆. 浅谈用极大化思想解决最大子矩阵问题[EB/OL]. (2003−041−20)[2022−01−10]. https://wenku.baidu.com/view/728cd5126edb6f1aff001fbb.html?_wkts_=1695568462819&bdQuery=%E6%B5%85%E8%B0%88%E7%94%A8%E6%9E%81%E5%A4%A7%E5%8C%96%E6%80%9D%E6%83%B3%E8%A7%A3%E5%86%B3%E6%9C%80%E5%A4%A7%E5%AD%90%E7%9F%A9
    [20] 胡寿松. 自动控制原理[M]. 7版. 北京: 科学出版社, 2019.
    [21] 王家亮,李树华,张海涛. 基于贝叶斯估计与区域划分遍历的四轴飞行器避障路径规划算法[J]. 计算机应用,2021,41(2): 384-389. doi: 10.11772/j.issn.1001-9081.2020060962

    WANG Jialiang, LI Shuhua, ZHANG Haitao. Obstacle avoidance path planning algorithm of quad-rotor helicopter based on Bayesian estimation and region division traversal[J]. Journal of Computer Applications, 2021, 41(2): 384-389. doi: 10.11772/j.issn.1001-9081.2020060962
  • 加载中
图(16)
计量
  • 文章访问数:  330
  • HTML全文浏览量:  55
  • PDF下载量:  58
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-04-20
  • 修回日期:  2022-12-16
  • 网络出版日期:  2023-10-12
  • 刊出日期:  2023-01-23

目录

    /

    返回文章
    返回