• ISSN 0258-2724
  • CN 51-1277/U
  • EI Compendex
  • Scopus 收录
  • 全国中文核心期刊
  • 中国科技论文统计源期刊
  • 中国科学引文数据库来源期刊

振噪融合的地铁钢轨波磨快速测量方法

从建力 王源 徐舟 李伟 陈嵘 王平

从建力, 王源, 徐舟, 李伟, 陈嵘, 王平. 振噪融合的地铁钢轨波磨快速测量方法[J]. 西南交通大学学报, 2023, 58(3): 677-684. doi: 10.3969/j.issn.0258-2724.20220260
引用本文: 从建力, 王源, 徐舟, 李伟, 陈嵘, 王平. 振噪融合的地铁钢轨波磨快速测量方法[J]. 西南交通大学学报, 2023, 58(3): 677-684. doi: 10.3969/j.issn.0258-2724.20220260
CONG Jianli, WANG Yuan, XU Zhou, LI Wei, CHEN Rong, WANG Ping. Rail Corrugation Measurement Method Based on Vibration-Noise Fusion in Metro System[J]. Journal of Southwest Jiaotong University, 2023, 58(3): 677-684. doi: 10.3969/j.issn.0258-2724.20220260
Citation: CONG Jianli, WANG Yuan, XU Zhou, LI Wei, CHEN Rong, WANG Ping. Rail Corrugation Measurement Method Based on Vibration-Noise Fusion in Metro System[J]. Journal of Southwest Jiaotong University, 2023, 58(3): 677-684. doi: 10.3969/j.issn.0258-2724.20220260

振噪融合的地铁钢轨波磨快速测量方法

doi: 10.3969/j.issn.0258-2724.20220260
基金项目: 国家自然科学基金(52278464, 52008198, 51778542);国家重点研发计划(2021YFB3703601);四川省杰出青年科技人才项目(2020JDJQ0033)
详细信息
    作者简介:

    从建力(1992—),男,博士研究生,研究方向为轨道状态智能检测与运维, E-mail:jlcong2019@my.swjtu.edu.cn

    通讯作者:

    陈嵘(1981—), 男, 教授, 博士, 研究方向为轨道动力学及轨道平顺性调控, E-mail:chenrong@home.swjtu.edu.cn

  • 中图分类号: U216.4

Rail Corrugation Measurement Method Based on Vibration-Noise Fusion in Metro System

  • 摘要:

    为实现数据驱动的钢轨波磨状态修,提出一种时-空密集型的钢轨波磨测量方法. 首先,采用智能终端检测列车编组车体振动和车厢噪声,对列车编组不同车体三向加速度进行波形匹配,得到延时估计值,修正列车运行速度和里程估计误差;其次,基于声纹谱能量法分析车厢声纹数据,并定义“波噪比”指标,量化钢轨波磨噪声能量及其高阶谐波能量占噪声总能量的比值,作为钢轨波磨自动识别的依据;最后,建立列车响应到钢轨波磨状态的反向映射关系,获取波噪比超限时的钢轨波磨波长和里程信息,以地铁某区间实测为例,采用钢轨波磨仪测量1.6 km范围的轨面短波不平顺,将测量结果 [0,50] mm波长范围的波深峰峰值与车厢声纹波噪比进行对比. 结果表明:当波噪比阈值取为0.2时,基于声纹数据识别的钢轨波磨与线路分布一致,验证了该方法可为钢轨波磨状态评估提供数据支撑.

     

  • 图 1  多智能终端监测列车振动-声纹

    Figure 1.  Multi-intelligent terminal monitoring train vibration-voiceprint

    图 2  车厢振动与噪声融合算法

    Figure 2.  Vibration-noise fusion algorithm for car

    图 3  无GPS环境下列车运行速度估计原理

    Figure 3.  Principle of train speed estimation without GPS

    图 4  移动窗下噪声数据频域表示

    Figure 4.  Spectrum of noise data in moving window

    图 5  某区间车载智能终端振动测量数据

    Figure 5.  Vibration data of on-board intelligent terminal in one section

    图 6  某区间车厢声纹信息分析

    Figure 6.  Voiceprint information analysis for car in one section

    图 7  某区段钢轨短波不平顺现场测量

    Figure 7.  Field test of shortwave irregularity for rail in certain section

    图 8  基于波噪比的钢轨波磨识别效果

    Figure 8.  Identification results of rail corrugation based on corrugation-noise ratio

    图 9  全线波噪比统计概率分布

    Figure 9.  Statistical probability distribution of corrugation-noise ratio for metro line

    图 10  全线钢轨波磨状态分布地图

    Figure 10.  Distribution map of rail corrugation state along metro line

  • [1] 关庆华,张斌,熊嘉阳,等. 地铁钢轨波磨的基本特征、形成机理和治理措施综述[J]. 交通运输工程学报,2021,21(1): 316-337. doi: 10.19818/j.cnki.1671-1637.2021.01.015

    GUAN Qinghua, ZHANG Bin, XIONG Jiayang, et al. Review on basic characteristics, formation mechanisms, and treatment measures of rail corrugation in metro systems[J]. Journal of Traffic and Transportation Engineering, 2021, 21(1): 316-337. doi: 10.19818/j.cnki.1671-1637.2021.01.015
    [2] 吴越,韩健,左齐宇,等. 钢轨波磨对高速列车车轮多边形磨耗产生与发展的影响[J]. 机械工程学报,2020,56(17): 198-208. doi: 10.3901/JME.2020.17.198

    WU Yue, HAN Jian, ZUO Qiyu, et al. Effect of rail corrugation on initiation and development of polygonal wear on high-speed train wheels[J]. Journal of Mechanical Engineering, 2020, 56(17): 198-208. doi: 10.3901/JME.2020.17.198
    [3] 郭建强,朱雷威,刘晓龙,等. 地铁司机室噪声与钢轨波磨关系的试验与仿真研究[J]. 机械工程学报,2019,55(16): 141-147. doi: 10.3901/JME.2019.16.141

    GUO Jianqiang, ZHU Leiwei, LIU Xiaolong, et al. Experimental and simulation study on the relationship between interior noise of metro cab and rail corrugation[J]. Journal of Mechanical Engineering, 2019, 55(16): 141-147. doi: 10.3901/JME.2019.16.141
    [4] HAN J, XIAO X B, WU Y, et al. Effect of rail corrugation on metro interior noise and its control[J]. Applied Acoustics, 2018, 130: 63-70. doi: 10.1016/j.apacoust.2017.09.007
    [5] SONG X L, QIAN Y, WANG K Y, et al. Effect of rail pad stiffness on vehicle-track dynamic interaction excited by rail corrugation in metro[J]. Transportation Research Record: Journal of the Transportation Research Board, 2020, 2674(6): 225-243. doi: 10.1177/0361198120918584
    [6] 朱海燕,袁遥,肖乾,等. 钢轨波磨研究进展[J]. 交通运输工程学报,2021,21(3): 110-133. doi: 10.19818/j.cnki.1671-1637.2021.03.006

    ZHU Haiyan, YUAN Yao, XIAO Qian, et al. Research progress on rail corrugation[J]. Journal of Traffic and Transportation Engineering, 2021, 21(3): 110-133. doi: 10.19818/j.cnki.1671-1637.2021.03.006
    [7] GRASSIE S L. Rail irregularities, corrugation and acoustic roughness: characteristics, significance and effects of reprofiling[J]. Proceedings of the Institution of Mechanical Engineers, Part F: Journal of Rail and Rapid Transit, 2012, 226(5): 542-557. doi: 10.1177/0954409712443492
    [8] WANG Y, TANG H Y, WANG P, et al. Multipoint chord reference system for track irregularity: part Ⅰ–theory and methodology[J]. Measurement, 2019, 138: 240-255. doi: 10.1016/j.measurement.2019.01.080
    [9] WANG Y, TANG H Y, WANG P, et al. Multipoint chord reference system for track irregularity: part Ⅱ–numerical analysis[J]. Measurement, 2019, 138: 194-205. doi: 10.1016/j.measurement.2019.01.081
    [10] 王源,李帅,陈嵘,等. 基于逆滤波的轨道不平顺测评误差分析及滤波参数优化[J]. 铁道学报,2017,39(10): 102-109. doi: 10.3969/j.issn.1001-8360.2017.10.014

    WANG Yuan, LI Shuai, CHEN Rong, et al. Error analysis of track irregularity measuring and filter parameters optimization based on inverse filtering method[J]. Journal of the China Railway Society, 2017, 39(10): 102-109. doi: 10.3969/j.issn.1001-8360.2017.10.014
    [11] GRASSIE S L, KALOUSEK J. Rail corrugation: characteristics, causes and treatments[J]. Proceedings of the Institution of Mechanical Engineers, Part F: Journal of Rail and Rapid Transit, 1993, 207(1): 57-68. doi: 10.1243/PIME_PROC_1993_207_227_02
    [12] 殷华,朱洪涛,魏晖,等. 基于中点弦测模型的钢轨波磨量值估计[J]. 振动•测试与诊断,2016,36(5): 954-959,1027.

    YIN Hua, ZHU Hongtao, WEI Hui, et al. Discussion on estimate rail corrugation amplitude based upon midpoint chord model[J]. Journal of Vibration, Measurement & Diagnosis, 2016, 36(5): 954-959,1027.
    [13] 陶捷, 朱洪涛, 殷华. 基于多中点弦同步测量的轨道波浪形磨耗快速检测方法: CN105128888A[P]. 2017-06-09.
    [14] TANAKA H, MATSUMOTO M, HARADA Y. Application of axle-box acceleration to track condition monitoring for rail corrugation management[C]//7th IET Conference on Railway Condition Monitoring 2016 (RCM 2016). Birmingham: IET, 2016: 1-7.
    [15] BOCCIOLONE M, CAPRIOLI A, CIGADA A, et al. A measurement system for quick rail inspection and effective track maintenance strategy[J]. Mechanical Systems and Signal Processing, 2007, 21(3): 1242-1254. doi: 10.1016/j.ymssp.2006.02.007
    [16] MOLODOVA M, LI ZL, DOLLEVOET R. Axle box acceleration: measurement and simulation for detection of short track defects[J]. Wear, 2011, 271(1/2): 349-356.
    [17] 刘金朝,陈东生,赵钢,等. 评判高铁轨道短波不平顺病害的轨道冲击指数法[J]. 中国铁道科学,2016,37(4): 34-41. doi: 10.3969/j.issn.1001-4632.2016.04.06

    LIU Jinzhao, CHEN Dongsheng, ZHAO Gang, et al. Track impact index method for evaluating track short wave irregularity of high speed railway[J]. China Railway Science, 2016, 37(4): 34-41. doi: 10.3969/j.issn.1001-4632.2016.04.06
    [18] 牛留斌,刘金朝,孙善超,等. 钢轨波磨指数与轨道短波不平顺关系研究[J]. 中国铁道科学,2020,41(5): 46-55. doi: 10.3969/j.issn.1001-4632.2020.05.06

    NIU Liubin, LIU Jinzhao, SUN Shanchao, et al. Relationship between rail corrugation index and track short wave irregularity[J]. China Railway Science, 2020, 41(5): 46-55. doi: 10.3969/j.issn.1001-4632.2020.05.06
    [19] TANAKA H, MIWA M. Modeling the development of rail corrugation to schedule a more economical rail grinding[J]. Proceedings of the Institution of Mechanical Engineers, Part F: Journal of Rail and Rapid Transit, 2020, 234(4): 370-380. doi: 10.1177/0954409719894833
    [20] THOMPSON D, JONES C. Noise and vibration from the wheel-rail interface[M]//Wheel-rail interface handbook. Amsterdam: Elsevier, 2009: 477-509.
    [21] WANG Y, CONG JL, WANG P, et al. A data-fusion approach for speed estimation and location calibration of a metro train based on low-cost sensors in smartphones[J]. IEEE Sensors Journal, 2019, 19(22): 10744-10752. doi: 10.1109/JSEN.2019.2933638
    [22] CONG J L, TANG H Y, WANG Y, et al. Experimental and numerical investigations of asymmetric chord-reference system regarding track geometry measurement[J]. Measurement, 2021, 182: 109743.1-109743.15. doi: 10.1016/j.measurement.2021.109743
  • 加载中
图(10)
计量
  • 文章访问数:  482
  • HTML全文浏览量:  97
  • PDF下载量:  65
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-04-11
  • 修回日期:  2022-10-13
  • 网络出版日期:  2023-04-12
  • 刊出日期:  2022-12-01

目录

    /

    返回文章
    返回