• ISSN 0258-2724
  • CN 51-1277/U
  • EI Compendex
  • Scopus 收录
  • 全国中文核心期刊
  • 中国科技论文统计源期刊
  • 中国科学引文数据库来源期刊

超声滚压EA4T车轴钢疲劳性能及寿命预测

张继旺 张浩楠 杨冰 苏凯新 李行

张继旺, 张浩楠, 杨冰, 苏凯新, 李行. 超声滚压EA4T车轴钢疲劳性能及寿命预测[J]. 西南交通大学学报. doi: 10.3969/j.issn.0258-2724.20220257
引用本文: 张继旺, 张浩楠, 杨冰, 苏凯新, 李行. 超声滚压EA4T车轴钢疲劳性能及寿命预测[J]. 西南交通大学学报. doi: 10.3969/j.issn.0258-2724.20220257
ZHANG Jiwang, ZHANG Haonan, YANG Bing, SU Kaixin, LI Hang. Fatigue Properties and Life Prediction of Ultrasonic Rolling EA4T Axle Steel[J]. Journal of Southwest Jiaotong University. doi: 10.3969/j.issn.0258-2724.20220257
Citation: ZHANG Jiwang, ZHANG Haonan, YANG Bing, SU Kaixin, LI Hang. Fatigue Properties and Life Prediction of Ultrasonic Rolling EA4T Axle Steel[J]. Journal of Southwest Jiaotong University. doi: 10.3969/j.issn.0258-2724.20220257

超声滚压EA4T车轴钢疲劳性能及寿命预测

doi: 10.3969/j.issn.0258-2724.20220257
基金项目: 国家自然科学基金项目(51675445)
详细信息
    作者简介:

    张继旺(1983—),男,研究员,博士,研究方向为材料和结构的疲劳与断裂,E-amil:zhangjiwang@swjtu.edu.cn

  • 中图分类号: U270.33

Fatigue Properties and Life Prediction of Ultrasonic Rolling EA4T Axle Steel

  • 摘要:

    为研究表面超声滚压(SURP)处理对EA4T车轴钢疲劳性能的影响,首先,采用SURP技术对EA4T车轴钢试样进行表面处理,并对处理后的试样进行表面性能测试,分析表面三维形貌、粗糙度、硬度、残余应力、半高宽(FWHM)和晶粒尺寸的变化;然后,采用旋转弯曲疲劳试验机对EA4T车轴钢试样进行疲劳试验,获得应力-疲劳寿命(S-N)曲线,并分析裂纹扩展规律,研究SURP处理对EA4T车轴钢疲劳性能和裂纹扩展行为的影响;最后,采用BP(back propagation)神经网络建立了以加载应力幅值、表面粗糙度、表面半高宽、表面硬度、硬化层深度、表面残余应力和残余应力层深度为输入的超声滚压EA4T车轴钢疲劳寿命预测模型,并对超声滚压EA4T车轴钢试样进行寿命预测. 研究结果表明:SURP处理可以使试样表面粗糙度降低为0.17 μm,并去除表面梨沟形貌;试样表面硬度提升至420 HV,试样表面引入约 −500 MPa的残余应力以及约550 μm深的残余应力层;研磨试样和研磨抛光试样以及SURP处理试样均具有传统疲劳极限,研磨试样和研磨抛光试样的疲劳性能基本一致,且疲劳极限均为355 MPa,SURP处理试样疲劳性能显著提升,其疲劳极限为455 MPa,相比研磨试样提升了28%;疲劳断口观察表明,所有试样的疲劳裂纹均萌生自表面,SURP处理没有改变试样的疲劳破坏机制;SURP处理使试样的裂纹扩展门槛值从6.29 MPa·m1/2增加到11.21 MPa·m1/2,同时减缓了裂纹萌生以及短裂纹扩展,从而显著提高了EA4T车轴钢疲劳性能;超声滚压EA4T车轴钢疲劳寿命预测模型预测精度为88.5%.

     

  • 图 1  试样取样位置示意

    Figure 1.  Specimen location

    图 2  试样形状及尺寸

    Figure 2.  Shape and dimension of specimen

    图 3  试样表面三维形貌和轮廓

    Figure 3.  3D surface morphologies and profiles of specimens

    图 4  试样剖面维氏硬度分布

    Figure 4.  Vickers hardness distributions of specimens

    图 5  试样剖面残余应力分布

    Figure 5.  Residual stress distributions of specimens

    图 6  试样剖面FWHM分布

    Figure 6.  FWHM distributions of specimens

    图 7  SURP处理和研磨试样的XRD

    Figure 7.  XRD patterns of SURP and grinding specimens

    图 8  S-N曲线

    Figure 8.  S-N curves

    图 9  研磨试样疲劳断口

    Figure 9.  Fatigue fracture of grinding specimen

    图 10  SURP处理试样疲劳断口

    Figure 10.  Fatigue fracture of SURP specimen

    图 11  研磨抛光和SURP处理试样的裂纹扩展速率

    Figure 11.  Crack propagation rates in grinding with polishing and SURP specimens

    图 12  研磨抛光和SURP处理试样裂纹扩展行为

    Figure 12.  Crack propagation behaviors of grinding with polishing and SURP specimens

    图 13  BP神经网络模型的结构

    Figure 13.  Structure of BP neural network model

    图 14  BP神经网络训练集结果

    Figure 14.  Training set results of BP neural network

    图 15  BP神经网络测试集结果

    Figure 15.  Testing set results of BP neural network

    表  1  EA4T化学成分

    Table  1.   Chemical composition of EA4T axel steel %

    化学成分CSiMnPSCrCuNiMo
    质量百分比0.27000.39000.72000.00750.00131.11000.01400.25000.2470
    下载: 导出CSV

    表  2  试样的加工方式和试验内容

    Table  2.   Processing method and experimental content of specimens

    试样种类加工方法试验内容
    1研磨疲劳试验
    2研磨抛光疲劳试验、裂纹扩展试验
    3SURP疲劳试验、裂纹扩展试验
    下载: 导出CSV
  • [1] 翟婉明,赵春发. 现代轨道交通工程科技前沿与挑战[J]. 西南交通大学学报,2016,51(2): 209-226.

    ZHAI Wanming, ZHAO Chunfa. Frontiers and challenges of sciences and technologies in modern railway engineering[J]. Journal of Southwest Jiaotong University, 2016, 51(2): 209-226.
    [2] 李祥志,张艳,徐良乐,等. 高速车轴的疲劳断裂及其应对措施[J]. 热加工工艺,2017,46(18): 25-29.

    LI Xiangzhi, ZHANG Yan, XU Liangle, et al. Fatigue fracture of high-speed axle and corresponding improvement measures[J]. Hot Working Technology, 2017, 46(18): 25-29.
    [3] 宮昱滨,鲁连涛,张远彬. 气体渗氮对中碳车轴钢疲劳性能的影响[J]. 实验力学,2017,32(1): 63-69.

    GONG Yubin, LU Liantao, ZHANG Yuanbin. Effect of gas nitriding on fatigue performance of medium carbon axle steel[J]. Journal of Experimental Mechanics, 2017, 32(1): 63-69.
    [4] 于鑫. 高速列车车轴加工残余应力与疲劳寿命关系研究[D]. 济南: 山东大学, 2015.
    [5] 任学冲,陈利钦,刘鑫贵,等. 表面超声滚压处理对高速列车车轴钢疲劳性能的影响[J]. 材料工程,2015,43(12): 1-5.

    REN Xuechong, CHEN Liqin, LIU Xingui, et al. Effects of surface ultrasonic rolling processing on fatigue properties of axle steel used on high speed train[J]. Journal of Materials Engineering, 2015, 43(12): 1-5.
    [6] 王睿,刘鹏涛,刘德义,等. 表面超声滚压工艺参数对EA4T车轴表面性能的影响[J]. 热加工工艺,2021,50(4): 88-92.

    WANG Rui, LIU Pengtao, LIU Deyi, et al. Influence of surface ultrasonic rolling process parameters on surface performance of EA4T axle[J]. Hot Working Technology, 2021, 50(4): 88-92.
    [7] 陈利钦,项彬,任学冲,等. 表面超声滚压处理工艺对高速列车车轴钢表面状态的影响[J]. 中国表面工程,2014,27(5): 96-101.

    CHEN Liqin, XIANG Bin, REN Xuechong, et al. Influences of surface ultrasonic rolling processing parameters on surface condition of axle steel used in high speed trains[J]. China Surface Engineering, 2014, 27(5): 96-101.
    [8] 张秀华,刘怀举,朱才朝,等. 基于数据驱动的零部件疲劳寿命预测研究现状与发展趋势[J]. 机械传动,2021,45(10): 1-14.

    ZHANG Xiuhua, LIU Huaiju, ZHU Caichao, et al. Current situation and developing trend of fatigue life prediction of components based on data-driven[J]. Journal of Mechanical Transmission, 2021, 45(10): 1-14.
    [9] MALEKI E, UNAL O, REZA KASHYZADEH K. Fatigue behavior prediction and analysis of shot peened mild carbon steels[J]. International Journal of Fatigue, 2018, 116: 48-67. doi: 10.1016/j.ijfatigue.2018.06.004
    [10] 苏凯新,张继旺,李行,等. 基于神经网络的喷丸25CrMo合金疲劳寿命及残余应力松弛行为预测研究[J]. 稀有金属材料与工程,2020,49(8): 2697-2705.

    SU Kaixin, ZHANG Jiwang, LI Hang, et al. Prediction of fatigue life and residual stress relaxation behavior of shot-peened 25CrMo axle steel based on neural network[J]. Rare Metal Materials and Engineering, 2020, 49(8): 2697-2705.
    [11] Japanese Industrial Standards Committee. Geometrical product specifications (GPS)-surface texture: profile method-rules and procedures for the assessment of surface texture: JIS B0633—2001. Tokyo: [s.n.], 2001.
    [12] LIN J, MA N S, LEI Y P, et al. Measurement of residual stress in arc welded lap joints by cos α X-ray diffraction method[J]. Journal of Materials Processing Technology, 2017, 243: 387-394. doi: 10.1016/j.jmatprotec.2016.12.021
    [13] 何少杰,杨文玉,郭步鹏,等. 机加工表面残余应力及其疲劳寿命评价的研究进展[J]. 表面技术,2015,44(6): 120-126,132.

    HE Shaojie, YANG Wenyu, GUO Bupeng, et al. Research progress on evaluation of surface residual stress and fatigue life of machined products[J]. Surface Technology, 2015, 44(6): 120-126,132.
    [14] HARADA Y, FUKAURA K, HAGA S. Influence of microshot peening on surface layer characteristics of structural steel[J]. Journal of Materials Processing Technology, 2007, 191(1/2/3): 297-301.
    [15] UNAL O, VAROL R. Almen intensity effect on microstructure and mechanical properties of low carbon steel subjected to severe shot peening[J]. Applied Surface Science, 2014, 290: 40-47. doi: 10.1016/j.apsusc.2013.10.184
    [16] MALEKI E, UNAL O, KASHYZADEH K R. Effects of conventional, severe, over, and re-shot peening processes on the fatigue behavior of mild carbon steel[J]. Surface and Coatings Technology, 2018, 344: 62-74. doi: 10.1016/j.surfcoat.2018.02.081
    [17] LU J Z, LUO K Y, ZHANG Y K, et al. Grain refinement of LY2 aluminum alloy induced by ultra-high plastic strain during multiple laser shock processing impacts[J]. Acta Materialia, 2010, 58(11): 3984-3994. doi: 10.1016/j.actamat.2010.03.026
    [18] 徐锋,章武林,杜永强,等. EA4T车轴不同加工工艺表面完整性分析[J]. 表面技术,2017,46(12): 277-282.

    XU Feng, ZHANG Wulin, DU Yongqiang, et al. Analysis of surface integrity of EA4T axle being processed in different technologies[J]. Surface Technology, 2017, 46(12): 277-282.
    [19] NOVOVIC D, DEWES R C, ASPINWALL D K, et al. The effect of machined topography and integrity on fatigue life[J]. International Journal of Machine Tools and Manufacture, 2004, 44(2/3): 125-134.
    [20] YILMAZ H, SADELER R. Impact wear behavior of ball burnished 316L stainless steel[J]. Surface and Coatings Technology, 2019, 363: 369-378. doi: 10.1016/j.surfcoat.2019.02.022
    [21] 袁劲松. 金属腐蚀疲劳裂纹扩展速率的近似计算[J]. 材料开发与应用,2000,15(2): 26-29. doi: 10.3969/j.issn.1003-1545.2000.02.008

    YUAN Jinsong. Approximate calculation of crack propagation rate of metal corrosion fatigue[J]. Development and Application of Materials, 2000, 15(2): 26-29. doi: 10.3969/j.issn.1003-1545.2000.02.008
    [22] MURAKAMI Y. Metal fatigue: effects of small defects and nonmetallic inclusions[M]. [S.l.]: Elsevier, 2002.
    [23] 王慧军,陈林,郭飞翔,等. 残余应力对U75V重轨钢疲劳裂纹扩展速率的影响[J]. 金属热处理,2017,42(6): 23-27.

    WANG Huijun, CHEN Lin, GUO Feixiang, et al. Effect of residual stress on fatigue crack propagation rate of U75V heavy rail steel[J]. Heat Treatment of Metals, 2017, 42(6): 23-27.
  • 加载中
图(15) / 表(2)
计量
  • 文章访问数:  247
  • HTML全文浏览量:  93
  • PDF下载量:  29
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-04-10
  • 修回日期:  2022-05-18
  • 网络出版日期:  2023-11-09

目录

    /

    返回文章
    返回