• ISSN 0258-2724
  • CN 51-1277/U
  • EI Compendex
  • Scopus 收录
  • 全国中文核心期刊
  • 中国科技论文统计源期刊
  • 中国科学引文数据库来源期刊

高速列车制动区段钢轨波磨抑制方法

崔晓璐 唐传平 包鹏羽 漆伟 李君达

崔晓璐, 唐传平, 包鹏羽, 漆伟, 李君达. 高速列车制动区段钢轨波磨抑制方法[J]. 西南交通大学学报, 2023, 58(3): 656-664. doi: 10.3969/j.issn.0258-2724.20220256
引用本文: 崔晓璐, 唐传平, 包鹏羽, 漆伟, 李君达. 高速列车制动区段钢轨波磨抑制方法[J]. 西南交通大学学报, 2023, 58(3): 656-664. doi: 10.3969/j.issn.0258-2724.20220256
CUI Xiaolu, TANG Chuanping, BAO Pengyu, QI Wei, LI Junda. Rail Corrugation Suppressing Method on Braking Sections of High-Speed Trains[J]. Journal of Southwest Jiaotong University, 2023, 58(3): 656-664. doi: 10.3969/j.issn.0258-2724.20220256
Citation: CUI Xiaolu, TANG Chuanping, BAO Pengyu, QI Wei, LI Junda. Rail Corrugation Suppressing Method on Braking Sections of High-Speed Trains[J]. Journal of Southwest Jiaotong University, 2023, 58(3): 656-664. doi: 10.3969/j.issn.0258-2724.20220256

高速列车制动区段钢轨波磨抑制方法

doi: 10.3969/j.issn.0258-2724.20220256
基金项目: 国家自然科学基金(52275176,51805057);重庆市教委科学技术研究计划(KJZD-K202100703);重庆市自然科学基金(CSTB2022NSCQ-MSX1542)
详细信息
    作者简介:

    崔晓璐(1990—),女,教授,博士,研究方向为轮轨摩擦学,E-mail:cui_xiaolu@foxmail.com

  • 中图分类号: U211

Rail Corrugation Suppressing Method on Braking Sections of High-Speed Trains

  • 摘要:

    为研究高速列车制动区段制动结构/轨道结构对轮对-轨道-制动系统摩擦自激振动的影响,首先,结合现场调研,建立CRH3高速列车轮对-轨道-制动系统有限元模型;然后,采用复特征值法研究考虑轮轨粘滑和制动滚滑作用下的轮对-轨道-制动系统的摩擦自激振动特性;进而探究制动结构中表面织构对整个系统摩擦自激振动特性的影响;最后,对轨道结构中扣件参数进行参数化分析,并采用最小二乘法和粒子群算法求得抑制钢轨波磨的扣件参数的最优解. 研究结果表明:高速列车在制动区段时,轮轨粘滑和制动滚滑作用导致的轮对-轨道-制动系统摩擦自激振动的主要频率为526.75 Hz,与现场波磨特征频率接近,说明轮对-轨道-制动系统的摩擦自激振动可能是该区段钢轨波磨的主要诱因;采用具有表面织构的闸片或制动盘能有效抑制制动区段的钢轨波磨,其中沟槽型闸片的抑制效果最佳;当扣件的垂向刚度为65.5 MN/m,横向刚度为46.0 MN/m,垂向阻尼为84.0 kN·s/m和横向阻尼为23.5 kN·s/m时,可以抑制高速列车制动区段的钢轨波磨.

     

  • 图 1  制动区段钢轨波磨现场调查分析

    Figure 1.  On-site investigation and analysis of rail corrugation on braking section

    图 2  CRH3高速列车轮对-轨道-制动系统的接触模型

    Figure 2.  Contact model of wheelset–track–brake system of CRH3 high-speed train

    图 3  CRH3高速列车轮对-轨道-制动系统有限元模型

    Figure 3.  Finite element model of wheelset–track–brake system of CRH3 high-speed train

    图 4  轮对-轨道-制动系统摩擦自激振动实部分布及模态

    Figure 4.  Real part distribution and modes of frictional self-excited vibration in wheelset–track–brake system

    图 5  不同表面织构下轮对-轨道-制动系统摩擦自激振动实部分布及闸片接触应力

    Figure 5.  Real part distribution of frictional self-excited vibration of wheelset–track–brake system and contact stress of brake pads under different surface textures

    图 6  扣件刚度对整个系统摩擦自激振动的影响

    Figure 6.  Influence of fastener stiffness on frictional self-excited vibration of overall system

    图 7  扣件阻尼对整个系统摩擦自激振动的影响规律

    Figure 7.  Influence of fastener damping on frictional self-excited vibration of overall system

    图 8  多元回归方程误差分析

    Figure 8.  Error analysis of multiple regression equation

    图 9  优化前、后复特征值实部结果对比

    Figure 9.  Comparison of real part results of complex eigenvalues before and after optimization

    表  1  有限元模型材料参数

    Table  1.   Material parameters of finite element model

    部件参数密度/(k•gm−3弹性模量/MPa泊松比
    轮对78002100000.30
    钢轨78002100000.30
    制动盘73002070000.30
    制动闸片250081000.30
    闸片托56001000000.30
    制动杠杆70001900000.30
    轨道板2400 295000.25
    CA 砂浆层2600 325000.20
    混凝土底座2400 225000.20
    下载: 导出CSV

    表  2  有限元模型连接参数

    Table  2.   Connection parameters of finite element model

    方向 扣件刚度/
    (MN·m−1
    扣件阻尼/
    (kN·s·m−1
    地基支撑刚度/(MN·m−1 地基支撑阻
    尼/(kN·s·m−1
    垂向 50 30 190 30
    横向 28 20
    纵向 28 20
    下载: 导出CSV
  • [1] 金学松,李霞,李伟,等. 铁路钢轨波浪形磨损研究进展[J]. 西南交通大学学报,2016,51(2): 264-273. doi: 10.3969/j.issn.0258-2724.2016.02.006

    JIN Xuesong, LI Xia, LI Wei, et al. Review of rail corrugation progress[J]. Journal of Southwest Jiaotong University, 2016, 51(2): 264-273. doi: 10.3969/j.issn.0258-2724.2016.02.006
    [2] 林凤涛,黄琴,张海,等. CRH3高速列车多边形磨耗车轮通过钢轨波磨区段的轮轨力研究[J]. 铁道科学与工程学报,2021,18(7): 1706-1714.

    LIN Fengtao, HUANG Qin, ZHANG Hai, et al. Study on wheel-rail force of CRH3 high speed train with wheel polygon when passing corrugation rail[J]. Journal of Railway Science and Engineering, 2021, 18(7): 1706-1714.
    [3] GRASSI E S. Rail irregularities, corrugation and acoustic roughness: characteristics, significance and effects of reprofiling[J]. Proceedings of the Institution of Mechanical Engineers Part F: Journal of Rail and Rapid Transit, 2012, 226(5): 542-557. doi: 10.1177/0954409712443492
    [4] EI BESHBICHI O, WAN C, BRUNI S, et al. Complex eigenvalue analysis and parameters analysis to investigate the formation of railhead corrugation in sharp curves[J]. Wear, 2020, 450/451: 203150.1-203150.10.
    [5] 陈光雄,金学松,邬平波,等. 车轮多边形磨耗机理的有限元研究[J]. 铁道学报,2011,33(1): 14-18. doi: 10.3969/j.issn.1001-8360.2011.01.003

    CHEN Guangxiong, JIN Xuesong, WU Pingbo, et al. Finite element study on the generation mechanism of polygonal wear of railway wheels[J]. Journal of the China Railway Society, 2011, 33(1): 14-18. doi: 10.3969/j.issn.1001-8360.2011.01.003
    [6] WANG Z Q, LEI Z Y. Analysis of rail corrugation characteristics on high-speed rail based on transient finite element method[J]. The International Journal of Acoustics and Vibration, 2021, 26(3): 231-239. doi: 10.20855/ijav.2021.26.31778
    [7] 王立乾. 高速铁路钢轨波浪型磨耗研究及其防治建议[J]. 石家庄铁道大学学报(自然科学版),2013,26(4): 83-86, 90. doi: 10.13319/j.cnki.sjztddxxbzrb.2013.04.010

    WANG Liqian. Research on high-speed railway rail corrugated wear and tear[J]. Journal of Shijiazhuang Tiedao University (Natural Science), 2013, 26(4): 83-86, 90. doi: 10.13319/j.cnki.sjztddxxbzrb.2013.04.010
    [8] CORREA N, OYARZABAL O, VADILLO E G, et al. Rail corrugation development in high speed lines[J]. Wear, 2011, 271(9/10): 2438-2447. doi: 10.1016/j.wear.2010.12.028
    [9] 司道林,李伟,杜香刚,等. 减缓高速铁路钢轨波磨的仿真分析[J]. 中国铁道科学,2014,35(6): 79-83. doi: 10.3969/j.issn.1001-4632.2014.06.12

    SI Daolin, LI Wei, DU Xianggang, et al. Simulation analysis on mitigating rail corrugation for high speed railway[J]. China Railway Science, 2014, 35(6): 79-83. doi: 10.3969/j.issn.1001-4632.2014.06.12
    [10] 姜子清,司道林,李伟,等. 高速铁路钢轨波磨研究[J]. 中国铁道科学,2014,35(4): 9-14. doi: 10.3969/j.issn.1001-4632.2014.04.02

    JIANG Ziqing, SI Daolin, LI Wei, et al. Research on rail corrugation of high-speed railway[J]. China Railway Science, 2014, 35(4): 9-14. doi: 10.3969/j.issn.1001-4632.2014.04.02
    [11] CUI X L, LI T, BAO P Y, et al. Research on the dynamic cause of rail corrugation in the braking section of high-speed railways under multiple vibration inducements[J]. Journal of Vibration Engineering & Technologies, 2023, 11(7): 71-83.
    [12] 吴波文. 制动对车轮多边形磨耗和钢轨波磨影响的研究[D]. 成都: 西南交通大学, 2020.
    [13] 崔晓璐,包鹏羽,陈佳欣,等. 高速铁路制动区间钢轨摩擦自激振动研究[J]. 西南交通大学学报,2023,58(1): 141-149.

    CUI Xiaolu, BAO Pengyu, CHEN Jiaxin, et al. Rail friction self-excited vibration in braking section of high-speed railway[J]. Journal of Southwest Jiaotong University, 2023, 58(1): 141-149.
    [14] BAO P Y, CUI X L, DING H H, et al. Influences of friction self-excited vibration characteristics of various types of high-speed trains on rail corrugations in braking sections[J]. Engineering Failure Analysis, 2022, 134: 106087.1-106087.10.
    [15] CHEN G X, ZHOU Z R, OUYANG H, et al. A finite element study on rail corrugation based on saturated creep force-induced self-excited vibration of a wheelset-track system[J]. Journal of Sound and Vibration, 2010, 329(22): 4643-4655. doi: 10.1016/j.jsv.2010.05.011
    [16] 陈光雄,钱韦吉,莫继良,等. 轮轨摩擦自激振动引起小半径曲线钢轨波磨的瞬态动力学[J]. 机械工程学报,2014,50(9): 71-76. doi: 10.3901/JME.2014.09.071

    CHEN Guangxiong, QIAN Weiji, MO Jiliang, et al. A transient dynamics study on wear-type rail corrugation on a tight curve due to the friction-induced self-excited vibration of a wheelset-track system[J]. Journal of Mechanical Engineering, 2014, 50(9): 71-76. doi: 10.3901/JME.2014.09.071
    [17] NIELSEN J C O, LUNDÉN R, JOHANSSON A, et al. Train-track interaction and mechanisms of irregular wear on wheel and rail surfaces[J]. Vehicle System Dynamics, 2003, 40(1/2/3): 3-54.
    [18] PALIWAL M, MAHAJAN A, DON J, et al. Noise and vibration analysis of a disc-brake system using a stick-slip friction model involving coupling stiffness[J]. Journal of Sound and Vibration, 2005, 282(3): 1273-1284.
    [19] WU B W, QIAO Q F, CHEN G X. et al. Effect of the unstable vibration of the disc brake system of high-speed trains on wheel polygonalization[J]. Proceedings of the Institution of Mechanical Engineers, 2020, 234(1): 80-95. doi: 10.1177/0954409719833787
    [20] ABUBAKAR A R, OUYANG H J. Complex eigenvalue analysis and dynamic transient analysis in predicting disc brake squeal[J]. International Journal of Vehicle Noise and Vibration, 2006, 2(2): 143-155. doi: 10.1504/IJVNV.2006.011051
    [21] ZHU, Q, CHEN, G. X, WU, B. W, et al. Effect of the material parameter and shape of brake pads on friction-induced disc brake squeal of a railway vehicle[J]. Tribology Transactions, 2021, 64(4): 744-752. doi: 10.1080/10402004.2021.1914254
    [22] 胡利鸿,莫继良,王东伟,等. 沟槽和圆坑织构抑制摩擦尖叫噪声研究[J]. 中国机械工程,2016,27(9): 1158-1164. doi: 10.3969/j.issn.1004-132X.2016.09.004

    HU Lihong, MO Jiliang, WANG Dongwei, et al. Groove-textured and pit-textured surfaces to suppress friction-induced squeal noise[J]. China Mechanical Engineering, 2016, 27(9): 1158-1164. doi: 10.3969/j.issn.1004-132X.2016.09.004
    [23] 王东伟. 沟槽型织构化表面调控界面摩擦振动噪声行为的研究[D]. 成都: 西南交通大学, 2019.
    [24] 张青,崔晓璐,陈光雄,等. 沟槽织构对盘形制动噪声的影响[J]. 机械设计,2017,34(2): 62-67.

    ZHANG Qing, CUI Xiaolu, CHEN Guangxiong, et al. Effect of groove-texture on disc braking noise[J]. Journal of Machine Design, 2017, 34(2): 62-67.
    [25] 陈光雄,崔晓璐,王科. 高速列车车轮踏面非圆磨耗机理[J]. 西南交通大学学报,2016,51(2): 244-250. doi: 10.3969/j.issn.0258-2724.2016.02.004

    CHEN Guangxiong, CUI Xiaolu, WANG Ke. Generation mechanism for plolygonalization of wheel treads of high-speed trains[J]. Journal of Southwest Jiaotong University, 2016, 51(2): 244-250. doi: 10.3969/j.issn.0258-2724.2016.02.004
    [26] ZHAO H Y, JENG D S. Accumulated pore pressures around submarine pipeline buried in trench layer with partial backfills[J]. Journal of Engineering Mechanics, 2016, 142(7): 04016042.1-04016042.15.
  • 加载中
图(9) / 表(2)
计量
  • 文章访问数:  346
  • HTML全文浏览量:  101
  • PDF下载量:  37
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-04-10
  • 修回日期:  2022-07-28
  • 网络出版日期:  2023-04-11
  • 刊出日期:  2022-09-22

目录

    /

    返回文章
    返回