• ISSN 0258-2724
  • CN 51-1277/U
  • EI Compendex
  • Scopus 收录
  • 全国中文核心期刊
  • 中国科技论文统计源期刊
  • 中国科学引文数据库来源期刊

送风方式对高速列车通风和呼吸污染物扩散特性的影响

李田 吴松波 张继业

李田, 吴松波, 张继业. 送风方式对高速列车通风和呼吸污染物扩散特性的影响[J]. 西南交通大学学报, 2024, 59(1): 94-103. doi: 10.3969/j.issn.0258-2724.20220246
引用本文: 李田, 吴松波, 张继业. 送风方式对高速列车通风和呼吸污染物扩散特性的影响[J]. 西南交通大学学报, 2024, 59(1): 94-103. doi: 10.3969/j.issn.0258-2724.20220246
LI Tian, WU Songbo, ZHANG Jiye. Effects of Air Supply Modes on Ventilation and Respiratory Pollutant Dispersion Characteristics of High-Speed Trains[J]. Journal of Southwest Jiaotong University, 2024, 59(1): 94-103. doi: 10.3969/j.issn.0258-2724.20220246
Citation: LI Tian, WU Songbo, ZHANG Jiye. Effects of Air Supply Modes on Ventilation and Respiratory Pollutant Dispersion Characteristics of High-Speed Trains[J]. Journal of Southwest Jiaotong University, 2024, 59(1): 94-103. doi: 10.3969/j.issn.0258-2724.20220246

送风方式对高速列车通风和呼吸污染物扩散特性的影响

doi: 10.3969/j.issn.0258-2724.20220246
基金项目: 国家自然科学基金(12372049,12172308)
详细信息
    作者简介:

    李田(1984—),男,副研究员,博士,研究方向为列车空气动力学,E-mail:litian2008@home.swjtu.edu.cn

  • 中图分类号: U270.383

Effects of Air Supply Modes on Ventilation and Respiratory Pollutant Dispersion Characteristics of High-Speed Trains

  • 摘要:

    高速列车交通网络发达且载客量大,但车厢环境封闭易造成污染物的堆积,为提高乘车舒适性和安全性,基于计算流体动力学理论(CFD),建立满载工况的全尺寸车厢通风计算模型. 针对排风口位于两侧车窗上端的排风方式,采用速度不均匀系数、温度不均匀系数、能量利用系数和通风效率作为列车通风系统的评价指标,对比研究6种送风方式对车厢内流场特性和呼吸污染物扩散特性的影响,包括多孔顶板送风、下部送风、多孔顶板送风 + 下部送风、局部多孔顶板送风、侧顶送风、局部多孔顶板送风 + 侧顶送风. 研究结果表明:通过调整风口之间的流量分配比例可以使送风气流均匀地流向客室两侧,改善车内温度均匀性;采用下部送风时,有助于提高通风系统的能量利用系数和通风效率,分别高达1.38和1.21,但会恶化车内乘坐舒适性;通过研究乘客之间呼吸污染物的相互影响情况发现,第C列乘客的呼吸污染物容易向第B列乘客的呼吸区域进行扩散,加剧乘客之间的交叉感染;通过减小多孔顶板的送风口尺寸,采用局部多孔顶板送风可以有效缓解该现象,使污染物的体积浓度下降至0.0019.

     

  • 图 1  车厢几何模型

    Figure 1.  Compartment geometry

    图 2  车厢横截面流场示意

    Figure 2.  Flow field of compartment cross section

    图 3  计算结果对比

    Figure 3.  Comparation of calculation results

    图 4  不同尺度网格模型的计算结果

    Figure 4.  Calculation results of grid models with different scales

    图 5  车厢横断面网格

    Figure 5.  Grid of compartment cross section

    图 6  房间几何模型

    Figure 6.  Room geometry model

    图 7  速度和污染物浓度的数值模拟结果和实验数据对比

    Figure 7.  Comparison of velocity and pollutant concentration by numerical simulation with experimental data

    图 8  垂直方向上的速度流场规律

    Figure 8.  Velocity flow field in vertical direction

    图 9  测量线上的气流速度分布

    Figure 9.  Air flow velocity distribution on measuring lines

    图 10  垂直方向上的温度场规律

    Figure 10.  Temperature field in vertical direction

    图 11  测量线上的温度分布

    Figure 11.  Temperature distribution on measuring lines

    图 12  垂直方向上的污染物扩散规律

    Figure 12.  Pollutant diffusion in vertical direction

    图 13  不同位置垂直面上的平均污染物浓度

    Figure 13.  Average pollutant concentration in vertical planes at different positions

    图 14  第7排和第11排位置的污染物浓度

    Figure 14.  Pollutant concentrations at rows 7 and 11

    图 15  乘客呼吸区域的污染物平均浓度

    Figure 15.  Average pollutant concentration in breathing area of passengers

    图 16  第B列乘客前方的污染物来源

    Figure 16.  Source of pollutants in front of passengers in column B

    图 17  车厢横断面上的采样点示意

    Figure 17.  Sampling points in compartment cross section

    表  1  通风参数

    Table  1.   Ventilation parameters

    通风方案送风口位置单个风口尺寸送风流量比例/%排风流量比例/%
    左侧右侧
    方案 1 多孔顶板送风 1000 mm × 18300 mm 100 40 60
    方案 2 下部送风 150 mm × 18300 mm 100 40 60
    方案 3 多孔顶板送风 1000 mm × 18300 mm 50 50 50
    下部送风 150 mm × 18300 mm 50
    方案 4 局部多孔顶板送风 500 mm × 18300 mm 100 40 60
    方案 5 侧顶送风 100 mm × 18300 mm 100 40 60
    方案 6 局部多孔顶板送风 500 mm × 18300 mm 50 40 60
    侧顶送风 100 mm × 18300 mm 50
    下载: 导出CSV

    表  2  评价指标

    Table  2.   Evaluation indicators

    通风
    方案
    通风
    方式
    速度
    不均匀系数
    温度
    不均匀系数
    能量
    利用系数
    通风
    效率
    方案 1多孔顶板送风0.460.061.171.11
    方案 2下部送风0.740.121.381.21
    方案 3多孔顶板送风 + 下部送风0.460.071.231.07
    方案 4局部多孔顶板送风0.690.071.000.95
    方案 5侧顶送风0.530.061.091.02
    方案 6局部多孔顶板送风 + 侧顶送风0.510.071.271.04
    下载: 导出CSV
  • [1] PAPINENI R S, ROSENTHAL F S. The size distribution of droplets in the exhaled breath of healthy human subjects[J]. Journal of Aerosol Medicine: the Official Journal of the International Society for Aerosols in Medicine, 1997, 10(2): 105-116. doi: 10.1089/jam.1997.10.105
    [2] GUPTA J K, LIN C H, CHEN Q Y. Characterizing exhaled airflow from breathing and talking[J]. Indoor Air, 2010, 20(1): 31-39. doi: 10.1111/j.1600-0668.2009.00623.x
    [3] SHERMAN M H. Tracer-gas techniques for measuring ventilation in a single zone[J]. Building and Environment, 1990, 25(4): 365-374. doi: 10.1016/0360-1323(90)90010-O
    [4] BIVOLAROVA M, ONDRÁČEK J, MELIKOV A, et al. A comparison between tracer gas and aerosol particles distribution indoors: the impact of ventilation rate, interaction of airflows, and presence of objects[J]. Indoor Air, 2017, 27(6): 1201-1212. doi: 10.1111/ina.12388
    [5] LI X P, NIU J L, GAO N. Spatial distribution of human respiratory droplet residuals and exposure risk for the co-occupant under different ventilation methods[J]. HVAC&R Research, 2011, 17: 432-445.
    [6] LI X P, NIU J, GAO N. Co-occupant’s exposure to exhaled pollutants with two types of personalized ventilation strategies under mixing and displacement ventilation systems[J]. Indoor Air, 2013, 23(2): 162-171. doi: 10.1111/ina.12005
    [7] AI Z T, MAK C M, GAO N P, et al. Tracer gas is a suitable surrogate of exhaled droplet nuclei for studying airborne transmission in the built environment[J]. Building Simulation, 2020, 13(3): 489-496. doi: 10.1007/s12273-020-0614-5
    [8] 李光熙,陶文铨,孙晓娟. 非典型肺炎病毒在空气中传播过程的初步数值模拟[J]. 西安交通大学学报,2003,37(7): 764-766. doi: 10.3321/j.issn:0253-987X.2003.07.026

    LI Guangxi, TAO Wenquan, SUN Xiaojuan. Primary numerical investigation of SARS virus spreading in air[J]. Journal of Xi’an Jiaotong University, 2003, 37(7): 764-766. doi: 10.3321/j.issn:0253-987X.2003.07.026
    [9] QIAN H, LI Y G, NIELSEN P V, et al. Dispersion of exhalation pollutants in a two-bed hospital ward with a downward ventilation system[J]. Building and Environment, 2008, 43(3): 344-354. doi: 10.1016/j.buildenv.2006.03.025
    [10] SHAO S Y, ZHOU D Z, HE R C, et al. Risk assessment of airborne transmission of COVID-19 by asymptomatic individuals under different practical settings[J]. Journal of Aerosol Science, 2021, 151: 105661.1-105661.9.
    [11] 蔡路,张继业,李田. 双层客车通风模拟与送风均匀性优化[J]. 机械工程学报,2020,56(14): 129-137. doi: 10.3901/JME.2020.14.129

    CAI Lu, ZHANG Jiye, LI Tian. Ventilation simulation and uniformity optimization of air supply for double-deck passenger cars[J]. Journal of Mechanical Engineering, 2020, 56(14): 129-137. doi: 10.3901/JME.2020.14.129
    [12] 刘杰,李人宪,陈琳,等. 高速列车空调系统及车内流场分析[J]. 西南交通大学学报,2012,47(1): 127-132.

    LIU Jie, LI Renxian, CHEN Lin, et al. Analysis of air flow field in air conditioning system and compartments of high-speed trains[J]. Journal of Southwest Jiaotong University, 2012, 47(1): 127-132.
    [13] 陶红歌,陈焕新,谢军龙,等. 空调列车硬座车厢内污染物扩散规律研究[J]. 铁道学报,2010,32(3): 28-32. doi: 10.3969/j.issn.1001-8360.2010.03.005

    TAO Hongge, CHEN Huanxin, XIE Junlong, et al. Research on contamination dispersion in hard-seat compartments of air-conditioning train[J]. Journal of the China Railway Society, 2010, 32(3): 28-32. doi: 10.3969/j.issn.1001-8360.2010.03.005
    [14] ZHANG L, LI Y G. Dispersion of coughed droplets in a fully-occupied high-speed rail cabin[J]. Building and Environment, 2012, 47: 58-66. doi: 10.1016/j.buildenv.2011.03.015
    [15] 吴松波,李田,易彩,等. 排风方式对高速列车客室内气流组织和呼吸污染物扩散特性的影响[J]. 中国科学:技术科学,2023,53(1): 101-111. doi: 10.1360/SST-2021-0363

    WU Songbo, LI Tian, YI Cai, et al. Effects of exhaust methods on air distribution and respiratory pollutants diffusion characteristics in high-speed train compartments[J]. Scientia Sinica (Technologica), 2023, 53(1): 101-111. doi: 10.1360/SST-2021-0363
    [16] LI T, WU S B, YI C, et al. Diffusion characteristics and risk assessment of respiratory pollutants in high-speed train carriages[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2022, 222: 104930.1-104930.12.
    [17] YANG C Q, YANG X D, ZHAO B. The ventilation needed to control thermal plume and particle dispersion from manikins in a unidirectional ventilated protective isolation room[J]. Building Simulation, 2015, 8(5): 551-565. doi: 10.1007/s12273-014-0227-6
    [18] ZHANG Z, CHEN Q. Experimental measurements and numerical simulations of particle transport and distribution in ventilated rooms[J]. Atmospheric Environment, 2006, 40(18): 3396-3408. doi: 10.1016/j.atmosenv.2006.01.014
  • 加载中
图(17) / 表(2)
计量
  • 文章访问数:  192
  • HTML全文浏览量:  91
  • PDF下载量:  27
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-04-12
  • 修回日期:  2022-10-10
  • 网络出版日期:  2023-11-23
  • 刊出日期:  2022-10-13

目录

    /

    返回文章
    返回