• ISSN 0258-2724
  • CN 51-1277/U
  • EI Compendex
  • Scopus 收录
  • 全国中文核心期刊
  • 中国科技论文统计源期刊
  • 中国科学引文数据库来源期刊

盾构千斤顶不良顶推作用下地铁管片衬砌开裂特性

张伟列 晏启祥 张川 杨凯 贾丁

张伟列, 晏启祥, 张川, 杨凯, 贾丁. 盾构千斤顶不良顶推作用下地铁管片衬砌开裂特性[J]. 西南交通大学学报, 2023, 58(5): 1073-1082. doi: 10.3969/j.issn.0258-2724.20220235
引用本文: 张伟列, 晏启祥, 张川, 杨凯, 贾丁. 盾构千斤顶不良顶推作用下地铁管片衬砌开裂特性[J]. 西南交通大学学报, 2023, 58(5): 1073-1082. doi: 10.3969/j.issn.0258-2724.20220235
ZHANG Weilie, YAN Qixiang, ZHANG Chuan, YANG Kai, JIA Ding. Cracking Behavior of Segmental Lining in Subways Under Adverse Jacking Force During Shield Tunneling[J]. Journal of Southwest Jiaotong University, 2023, 58(5): 1073-1082. doi: 10.3969/j.issn.0258-2724.20220235
Citation: ZHANG Weilie, YAN Qixiang, ZHANG Chuan, YANG Kai, JIA Ding. Cracking Behavior of Segmental Lining in Subways Under Adverse Jacking Force During Shield Tunneling[J]. Journal of Southwest Jiaotong University, 2023, 58(5): 1073-1082. doi: 10.3969/j.issn.0258-2724.20220235

盾构千斤顶不良顶推作用下地铁管片衬砌开裂特性

doi: 10.3969/j.issn.0258-2724.20220235
基金项目: 国家自然科学基金(51878573)
详细信息
    作者简介:

    张伟列(1990—),男,博士研究生,研究方向为隧道结构安全评估与维修理论,E-mail:keysize@my.swjtu.edu.cn

    通讯作者:

    晏启祥(1971—),男,教授,博士,研究方向为隧道与地下结构理论,E-mail:764365015@qq.com

  • 中图分类号: U45

Cracking Behavior of Segmental Lining in Subways Under Adverse Jacking Force During Shield Tunneling

  • 摘要:

    为指导地铁区间隧道施工盾构掘进控制和管片衬砌防裂设计,建立考虑接头-管片的盾构隧道装配式衬砌结构数值模型,基于混凝土弥散开裂本构模型,研究直线段管片衬砌在千斤顶轴向倾斜以及千斤顶端面侧移两种不良顶推作用下管片衬砌的开裂特性. 研究结果表明:在上述2种不良顶推力下,顶推导致的管片衬砌裂缝主要分为封顶块螺栓孔裂缝、手孔纵向裂缝和管片环面纵向裂缝3类;当千斤顶出现轴向倾斜致裂时,拱顶封顶块环向螺栓孔处的裂缝宽度最大,且当轴向倾斜角度达到3° 时,3类裂缝宽度均已超过施工的允许值;当千斤顶端面侧移致裂时,衬砌环面及封顶块环向螺栓孔位置处的宽度最大,其中端面整体向下侧移是最为不利的情况;管片衬砌开裂将导致裂缝位置处钢筋应力增大,相同开裂位置处的钢筋应力-裂缝宽度关系基本不受顶推力倾斜角度变化的影响,裂缝的宽度与钢筋的应力呈正相关关系. 盾构施工时,应严格控制盾构掘进不良顶推作用,对容易产生裂缝的位置建议加强配筋以控制裂缝的发生.

     

  • 图 1  有限元模型

    Figure 1.  Finite element model

    图 2  管片衬砌受力示意

    Figure 2.  Force of segmenal lining

    图 3  千斤顶分区示意

    Figure 3.  Jack partition

    图 4  千斤顶轴向倾斜示意

    Figure 4.  Axial tilt of inclining of jack

    图 5  千斤顶轴向倾斜诱发的裂缝宽度云图

    Figure 5.  Nephogram of crack width induced by axial tilt of jack

    图 6  工况1-3裂缝发展示意

    Figure 6.  Crack propagation under condition 1-3

    图 7  主要裂缝的宽度-顶推力曲线

    Figure 7.  Crack width-jacking force curves of major cracks

    图 8  不同裂缝处的钢筋拉应力-顶推力曲线

    Figure 8.  Steel reinforcement stress-jacking force curves of cracks

    图 9  钢筋应力-裂缝宽度曲线

    Figure 9.  Steel reinforcement stress-crack width curves

    图 10  千斤顶顶推位置侧移示意

    Figure 10.  Lateral displacement of jack

    图 11  千斤顶端面侧移各工况裂缝宽度云图

    Figure 11.  Crack width induced by end face lateral displacement of jacks

    图 12  工况2-2裂缝发展示意

    Figure 12.  Crack propagation under condition 2-2

    图 13  主要裂缝宽度-千斤顶总推力曲线

    Figure 13.  Crack width-total jacking force curves of major cracks

    表  1  地层材料参数

    Table  1.   Material parameters of soils

    材料重度/
    (kN•m−3
    弹性模量/
    MPa
    泊松比内摩擦
    角/(°)
    黏聚力/
    MPa
    杂填土18.61.00.3510.00.010
    粉质
    黏土
    19.73.90.2811.00.026
    粉土19.04.80.3019.70.018
    卵石土22.550.00.2245.00
    中风化
    泥岩
    26.9750.00.1833.00.300
    下载: 导出CSV

    表  2  管片衬砌混凝土、钢筋和螺栓的材料参数

    Table  2.   Material parameters of concrete, steel reinforcement, and bolts of segmental lining

    材料弹性模量/
    GPa
    屈服强度/
    MPa
    密度/
    (kg•m−3
    泊松比抗拉强度/
    MPa
    抗压强度/
    MPa
    拉伸断裂能/
    (N•mm−1
    压缩断裂能/
    (N•mm−1
    混凝土34.525000.22.332.50.1540
    钢筋200.040078000.2
    螺栓210.044078000.2
    下载: 导出CSV
  • [1] 卢岱岳,何川,王士民. 千斤顶作用下带榫管片的裂纹扩展规律[J]. 西南交通大学学报,2017,52(1): 75-82.

    LU Daiyue, HE Chuan, WANG Shimin. Crack propagation law of segment tendon under jacking forces[J]. Journal of Southwest Jiaotong University, 2017, 52(1): 75-82.
    [2] 苏昂,王士民,何川,等. 复合地层盾构隧道管片施工病害特征及成因分析[J]. 岩土工程学报,2019,41(4): 683-692.

    SU Ang, WANG Shimin, HE Chuan, et al. Disease characteristics and causes analysis of segments of shield tunnels in composite stratum during construction[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(4): 683-692.
    [3] CHEN J S, MO H H. Numerical study on crack problems in segments of shield tunnel using finite element method[J]. Tunnelling and Underground Space Technology, 2009, 24(1): 91-102. doi: 10.1016/j.tust.2008.05.007
    [4] 杨雨冰,谢雄耀. 基于断裂力学的盾构隧道管片结构开裂破损机制探讨[J]. 岩石力学与工程学报,2015,34(10): 2114-2124.

    YANG Yubing, XIE Xiongyao. Breaking mechanism of segmented lining in shield tunnel based on fracture mechanics[J]. Chinese Journal of Rock Mechanics and Engineering, 2015, 34(10): 2114-2124.
    [5] 王飞阳,黄宏伟. 盾构隧道衬砌结构裂缝演化规律及其简化模拟方法[J]. 岩石力学与工程学报,2020,39(增1): 2902-2910.

    WANG Feiyang, HUANG Hongwei. Crack evolution law of shield tunnel lining and its simplified simulation method[J]. Chinese Journal of Rock Mechanics and Engineering, 2020, 39(S1): 2902-2910.
    [6] WANG F Y, ZHOU M L, ZHANG D M, et al. Random evolution of multiple cracks and associated mechanical behaviors of segmental tunnel linings using a multiscale modeling method[J]. Tunnelling and Underground Space Technology, 2019, 90: 220-230. doi: 10.1016/j.tust.2019.05.008
    [7] YAN Q X, XU Y J, ZHANG W L, et al. Numerical analysis of the cracking and failure behaviors of segmental lining structure of an underwater shield tunnel subjected to a derailed high-speed train impact[J]. Tunnelling and Underground Space Technology, 2018, 72(2): 41-54.
    [8] YAN Q X, SUN M H, QING S Y, et al. Numerical investigation on the damage and cracking characteristics of the shield tunnel caused by derailed high-speed train[J]. Engineering Failure Analysis, 2020, 108(8): 104205.1-104205.15.
    [9] 黄宏伟,刘德军,薛亚东,等. 基于扩展有限元的隧道衬砌裂缝开裂数值分析[J]. 岩土工程学报,2013,35(2): 266-275.

    HUANG Hongwei, LIU Ddjun, XUE Yadong, et al. Numerical analysis of cracking of tunnel linings based on extended finite element[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(2): 266-275.
    [10] WANG S M, LIU C K, SHAO Z M, et al. Experimental study on damage evolution characteristics of segment structure of shield tunnel with cracks based on acoustic emission information[J]. Engineering Failure Analysis, 2020, 118: 104899.1-104899.14.
    [11] XU G W, HE C, LU D Y, et al. The influence of longitudinal crack on mechanical behavior of shield tunnel lining in soft-hard composite strata[J]. Thin-Walled Structures, 2019, 144: 106282.1-106282.23.
    [12] CAVALARO S H P, BLOM C B M, WALRAVEN J C, et al. Structural analysis of contact deficiencies in segmented lining[J]. Tunnelling and Underground Space Technology, 2011, 26(6): 734-749. doi: 10.1016/j.tust.2011.05.004
    [13] 许学昭,李兆平,王凯,等. 基于大直径盾构隧道扩挖地铁车站的结构方案及其关键节点受力和变形[J]. 中国铁道科学,2021,42(2): 66-76.

    XU Xuezhao, LI Zhaoping, WANG Kai, et al. Structural scheme of metro station constructed by enlarging large diameter shield tunnel and stress and deformation of its key joints[J]. China Railway Science, 2021, 42(2): 66-76.
    [14] 肖明清,封坤,张忆,等. 盾构隧道同步注浆浆液浮力引起的管片错台量分析[J]. 隧道建设(中英文),2021,41(12): 2048-2057.

    XIAO Mingqing, FENG Kun, ZHANG Yi, et al. Analysis of segment dislocation caused by grout buoyancy during synchronous grouting of shield tunnels[J]. Tunnel Construction, 2021, 41(12): 2048-2057.
    [15] JIN H, YU K W, GONG Q M, et al. Load-carrying capability of shield tunnel damaged by shield shell squeezing action during construction[J]. Thin-Walled Structures, 2018, 132: 69-78. doi: 10.1016/j.tws.2018.07.057
    [16] CONFORTI A, TRABUCCHI I, TIBERTI G, et al. Precast tunnel segments for metro tunnel lining: a hybrid reinforcement solution using macro-synthetic fibers[J]. Engineering Structures, 2019, 199: 109628.1-109628.11.
    [17] 中华人民共和国住房和城乡建设部. 混凝土结构设计规范: GB 50011—2010 [S]. 北京: 中国建筑工业出版社, 2011.
    [18] 项贻强,徐建武,唐国斌,等. 钢筋混凝土构件裂缝宽度计算的修正方法及其实桥试验研究[J]. 公路交通科技,2011,28(2): 45-51.

    XIANG Yiqiang, XU Jianwu, TANG Guobin, et al. Modified method for calculating crack width of reinforced concrete members and its field test[J]. Journal of Highway and Transportation Research and Development, 2011, 28(2): 45-51.
  • 加载中
图(13) / 表(2)
计量
  • 文章访问数:  466
  • HTML全文浏览量:  106
  • PDF下载量:  51
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-04-02
  • 修回日期:  2022-10-03
  • 网络出版日期:  2023-07-01
  • 刊出日期:  2022-10-12

目录

    /

    返回文章
    返回