• ISSN 0258-2724
  • CN 51-1277/U
  • EI Compendex
  • Scopus 收录
  • 全国中文核心期刊
  • 中国科技论文统计源期刊
  • 中国科学引文数据库来源期刊

基于响应面法的结构参数对引射器引射系数影响的仿真研究

贾德民 王晓艳 王培伦 于彬彬 徐煜 陈修旻 赵建辉

贾德民, 王晓艳, 王培伦, 于彬彬, 徐煜, 陈修旻, 赵建辉. 基于响应面法的结构参数对引射器引射系数影响的仿真研究[J]. 西南交通大学学报. doi: 10.3969/j.issn.0258-2724.20220232
引用本文: 贾德民, 王晓艳, 王培伦, 于彬彬, 徐煜, 陈修旻, 赵建辉. 基于响应面法的结构参数对引射器引射系数影响的仿真研究[J]. 西南交通大学学报. doi: 10.3969/j.issn.0258-2724.20220232
JIA Demin, WANG Xiaoyan, WANG Peilun, YU Binbin, XU Yu, CHEN Xiumin, ZHAO Jianhui. Simulation Study of Influence of Structural Parameters on Entrainment Coefficient of Ejector Based on Response Surface Method[J]. Journal of Southwest Jiaotong University. doi: 10.3969/j.issn.0258-2724.20220232
Citation: JIA Demin, WANG Xiaoyan, WANG Peilun, YU Binbin, XU Yu, CHEN Xiumin, ZHAO Jianhui. Simulation Study of Influence of Structural Parameters on Entrainment Coefficient of Ejector Based on Response Surface Method[J]. Journal of Southwest Jiaotong University. doi: 10.3969/j.issn.0258-2724.20220232

基于响应面法的结构参数对引射器引射系数影响的仿真研究

doi: 10.3969/j.issn.0258-2724.20220232
基金项目: 内燃机可靠性国家重点实验室开放基金(skler-202012)
详细信息
    作者简介:

    贾德民(1987 —),男,高级工程师,研究方向为内燃机先进技术,E-mail:690878234@qq.com

    通讯作者:

    赵建辉(1981—),男,教授,研究方向为柴油机燃料喷射技术,E-mail: zhao163.163@163.com

  • 中图分类号: TK401

Simulation Study of Influence of Structural Parameters on Entrainment Coefficient of Ejector Based on Response Surface Method

  • 摘要:

    为分析引射器引射系数的显著影响因素,建立以空气为介质的引射器二维可压缩流动数值模型,基于实验数据完成了引射器模型计算准确性的校核验证. 采用D最优实验设计方法设计计算矩阵,基于最小二乘法构建二阶形式的引射系数响应面预测模型,并基于响应面预测模型开展了引射系数显著参数及参数交互作用的仿真分析. 研究结果表明:引射系数预测值和计算值的吻合性证明了响应面预测模型的准确性;扩压段长度、混合段长度、混合段直径和喷嘴出口到混合段入口距离的交互、混合段直径和混合段长度的交互、混合段长度和扩压段扩散角的交互是引射器引射系数的关键影响因素,因其对引射系数影响的P值小于0.001;扩压段扩散角、喷嘴出口到混合段距离和扩压段长度的交互、混合段长度和喷嘴出口到混合段距离的交互对引射系数具有重要的影响,是引射系数影响的主要参数;在参数显著交互作用中,影响引射系数的显著因素是变化的,取决于显著交互作用双参数的取值范围.

     

  • 图 1  亚音速引射器结构

    Figure 1.  Structure of subsonic ejector

    图 2  引射器流域网格

    Figure 2.  Grid of flow domain in ejector

    图 3  引射系数随网格数量的变化

    Figure 3.  Variation of entrainment coefficient with the number of grids

    图 4  模型计算结果与实验数据的对比

    Figure 4.  Comparison between calculated values and experimental data of the model

    图 5  引射系数的预测值与计算值对比

    Figure 5.  Comparison between predicted values and calculated values of entrainment coefficient

    图 6  μ、Gp、GsLs的变化

    Figure 6.  Variation of μ, Gp, and Gs with Ls

    图 7  不同Ls下压力、流体速度分布云图

    Figure 7.  Pressure and velocity distribution of the flow under different Ls

    图 8  μ、Gp、GsLk的变化情况

    Figure 8.  Variation of μ, Gp, and Gs with Lk

    图 9  不同Lk下压力、流体速度分布云图

    Figure 9.  Pressure and velocity distribution of the flow under different Ls

    图 10  μ、Gp、Gsθs的变化情况

    Figure 10.  Variation of μ, Gp, and Gs with θs

    图 11  不同θs下的速度分布云图

    Figure 11.  Velocity distribution under different θs

    图 12  Lkdkμ的交互影响

    Figure 12.  Effect of interaction between Lk and dk on μ

    图 13  Lcdkμ的交互影响

    Figure 13.  Effect of interaction between Lc and dK on μ

    图 14  Lkθsμ的交互影响

    Figure 14.  Effect of interaction between Lk and θs on μ

    图 15  LcLkμ的交互影响

    Figure 15.  Effect of interaction between LC and LK on μ

    图 16  LcLsμ的交互影响

    Figure 16.  Effect of interaction between Lc and Ls on μ

    表  1  引射器主要结构参数

    Table  1.   Main structural parameters of the ejector

    参数数值
    混合段直径 dk/mm44.1
    喷嘴出口到混合段入口距离 Lc/mm51
    混合段长度 Lk/mm265
    扩压段长度 Ls/mm315
    扩压段扩散角 θs/(°)8
    下载: 导出CSV

    表  2  不同压力下引射器实验结果[8]Pc=1100.1 kPa)

    Table  2.   Experimental results of the ejector under different pressures [8]Pc = 1100.1 kPa)

    组别Pp/kPaPs/kPaGp/(g·ms−1Gs/(g·ms−1
    A130085.1130.740.2
    A230090.0130.8176.3
    A330095.0130.9272.1
    A430097.5130.9337.9
    A530199.9130.8389.0
    下载: 导出CSV

    表  3  引射器结构参数的变化范围

    Table  3.   Variation range of structural parameters of ejector

    参数基准值变化范围
    dk/ mm44.140.1~48.1
    Ls/ mm315265~365
    Lk/ mm17585~265
    θs/(°)84~12
    Lc/ mm5535~75
    下载: 导出CSV

    表  4  引射器计算参数及引射系数

    Table  4.   Calculation matrix and entrainment coefficient of ejector

    组别dk/mmLs/mmLk/mmθs/(°)Lc/mmμ
    140.1265854350.189558
    248.12658512350.07164
    344.1315854350.209247
    440.13658512350.188561
    548.1365858350.146944
    648.13651754350.214265
    740.126526512350.186404
    848.12652654350.180986
    940.13652654350.231475
    1048.136526512350.244793
    1140.12658512550.172385
    1248.1365854550.188328
    1344.12651754550.206013
    1440.13651758550.243177
    1540.13152654550.199469
    1648.13152658550.24531
    1740.1265858750.190808
    1844.12658512750.171817
    1948.1265854750.161238
    2040.1365854750.215495
    2148.13658512750.15856
    2240.131517512750.175558
    2348.13151758750.235737
    2440.12652654750.14897
    2548.126526512750.230014
    2640.136526512750.169519
    2744.13652658750.261608
    2848.13652654750.210122
    2948.136526512750.244963
    3048.136526512750.244963
    3148.136526512750.244963
    下载: 导出CSV

    表  5  引射系数响应面模型的评价指标

    Table  5.   Evaluation index of response surface model of entrainment coefficient

    组成项P组成项P
    dk 0.0554 dkLs 0.6644
    Ls < 0.0001 dkLk < 0.0001
    Lk < 0.0001 dkθs 0.1199
    θs 0.0208 dkLc 0.0001
    Lc 0.8256 LsLk 0.8086
    $d_{\rm{k}}^2 $ 0.0008 Lsθs 0.2287
    $L_{\rm{s}}^2 $ 0.3913 LsLc 0.0128
    $L_{\rm{k}}^2 $ 0.0895 Lkθs 0.0002
    $\theta_{\rm{s}}^2 $ 0.0033 LkLc 0.002
    $L_{\rm{c}}^2 $ 0.0693 θsLc 0.2378
    下载: 导出CSV
  • [1] FU W N, LIU Z L, LI Y X, et al. Numerical study for the influences of primary steam nozzle distance and mixing chamber throat diameter on steam ejector performance[J]. International Journal of Thermal Sciences, 2018, 132: 509-516. doi: 10.1016/j.ijthermalsci.2018.06.033
    [2] SAMAKÉ O, GALANIS N, SORIN M. On the design and corresponding performance of steam jet ejectors[J]. Desalination, 2016, 381: 15-25. doi: 10.1016/j.desal.2015.11.027
    [3] CHEN W X, CHONG D T, YAN J J, et al. The numerical analysis of the effect of geometrical factors on natural gas ejector performance[J]. Applied Thermal Engineering, 2013, 59(1/2): 21-29.
    [4] BANASIAK K, PALACZ M, HAFNER A, et al. A CFD-based investigation of the energy performance of two-phase R744 ejectors to recover the expansion work in refrigeration systems: an irreversibility analysis[J]. International Journal of Refrigeration, 2014, 40: 328-337. doi: 10.1016/j.ijrefrig.2013.12.002
    [5] HAKKAKI-FARD A, AIDOUN Z, OUZZANE M. A computational methodology for ejector design and performance maximisation[J]. Energy Conversion and Management, 2015, 105: 1291-1302. doi: 10.1016/j.enconman.2015.08.070
    [6] ZHU Y H, CAI W J, WEN C Y, et al. Numerical investigation of geometry parameters for design of high performance ejectors[J]. Applied Thermal Engineering, 2009, 29(5/6): 898-905.
    [7] CHONG D T, YAN J J, WU G S, et al. Structural optimization and experimental investigation of supersonic ejectors for boosting low pressure natural gas[J]. Applied Thermal Engineering, 2009, 29(14/15): 2799-2807.
    [8] NIKIFOROW K, KOSKI P, KARIMÄKI H, et al. Designing a hydrogen gas ejector for 5 kW stationary PEMFC system-CFD-modeling and experimental validation[J]. International Journal of Hydrogen Energy, 2016, 41(33): 14952-14970. doi: 10.1016/j.ijhydene.2016.06.122
    [9] 王子瑞. 基于响应面法的贯流式水轮机多目标优化设计[D]. 西安: 西安理工大学, 2012.
    [10] OMIDVAR A, GHAZIKHANI M, MODARRES RAZAVI S M R. Entropy analysis of a solar-driven variable geometry ejector using computational fluid dynamics[J]. Energy Conversion and Management, 2016, 119: 435-443. doi: 10.1016/j.enconman.2016.03.090
    [11] LI S Y, YAN J, LIU Z, et al. Optimization on crucial ejector geometries in a multi-evaporator refrigeration system for tropical region refrigerated trucks[J]. Energy, 2019, 189: 116347.1-116347.14.
    [12] BANASIAK K, HAFNER A, ANDRESEN T. Experimental and numerical investigation of the influence of the two-phase ejector geometry on the performance of the R744 heat pump[J]. International Journal of Refrigeration, 2012, 35(6): 1617-1625. doi: 10.1016/j.ijrefrig.2012.04.012
    [13] SOLMAZ H, ARDEBILI S M S, CALAM A, et al. Prediction of performance and exhaust emissions of a CI engine fueled with multi-wall carbon nanotube doped biodiesel-diesel blends using response surface method[J]. Energy, 2021, 227: 1205181.1-1205181.13.
  • 加载中
图(16) / 表(5)
计量
  • 文章访问数:  72
  • HTML全文浏览量:  54
  • PDF下载量:  14
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-04-19
  • 修回日期:  2022-06-16
  • 网络出版日期:  2023-11-18

目录

    /

    返回文章
    返回