• ISSN 0258-2724
  • CN 51-1277/U
  • EI Compendex
  • Scopus 收录
  • 全国中文核心期刊
  • 中国科技论文统计源期刊
  • 中国科学引文数据库来源期刊

纵向通风作用下隧道内氢泄漏爆炸隐患分析

谢永亮 吕娜

谢永亮, 吕娜. 纵向通风作用下隧道内氢泄漏爆炸隐患分析[J]. 西南交通大学学报, 2024, 59(1): 81-86. doi: 10.3969/j.issn.0258-2724.20220222
引用本文: 谢永亮, 吕娜. 纵向通风作用下隧道内氢泄漏爆炸隐患分析[J]. 西南交通大学学报, 2024, 59(1): 81-86. doi: 10.3969/j.issn.0258-2724.20220222
XIE Yongliang, LYU Na. Explosion Hazard Analysis of Leaked Hydrogen in Tunnels Under Longitudinal Ventilation[J]. Journal of Southwest Jiaotong University, 2024, 59(1): 81-86. doi: 10.3969/j.issn.0258-2724.20220222
Citation: XIE Yongliang, LYU Na. Explosion Hazard Analysis of Leaked Hydrogen in Tunnels Under Longitudinal Ventilation[J]. Journal of Southwest Jiaotong University, 2024, 59(1): 81-86. doi: 10.3969/j.issn.0258-2724.20220222

纵向通风作用下隧道内氢泄漏爆炸隐患分析

doi: 10.3969/j.issn.0258-2724.20220222
基金项目: 四川省科技厅应用基础研究(2022NSFSC1912)
详细信息
    作者简介:

    谢永亮(1986—),男,副教授,博士,研究方向为新能源与交通安全,E-mail:yongliangxie17@163.com

  • 中图分类号: TK91

Explosion Hazard Analysis of Leaked Hydrogen in Tunnels Under Longitudinal Ventilation

  • 摘要:

    为研究纵向通风能否有效控制隧道中泄漏氢气的扩散以及降低可燃氢云的超压危害,本文以一长100 m的方形隧道为研究对象,利用FLUENT软件对隧道内氢气泄漏扩散现象进行数值模拟,基于可燃氢云爆炸超压对人和建筑物的危害分级,分析纵向通风降低隧道内氢气泄漏爆炸危害性的作用效果. 研究结果表明:计算工况下,隧道内发生氢气射流火灾时的纵向风速范围为6.5~8.0 m/s;纵向通风能够有效控制隧道内氢气的泄漏和扩散,但不能完全消除隧道氢泄漏爆炸的可能性和危害性.

     

  • 图 1  隧道外形(单位:m)

    Figure 1.  Tunnel outline (unit: m)

    图 2  氢气泄漏实验和计算结果对比[15]

    Figure 2.  Hydrogen leakage results obtained from experiments and calculations[15]

    图 3  网格加密区

    Figure 3.  Mesh refinement area

    图 4  网格无关性

    Figure 4.  Grid independence

    图 5  隧道中轴线纵断面处可燃氢云分布随纵向风速的变化

    Figure 5.  Variation of combustible hydrogen cloud distribution with longitudinal ventilation velocity at longitudinal section of tunnel central axis

    图 6  氢气泄漏口横断面处可燃氢云分布随纵向风速的变化

    Figure 6.  Variation of combustible hydrogen cloud distribution with longitudinal ventilation velocity at cross section of hydrogen leakage port

    图 7  可燃极限内氢气云体积随纵向风速的变化

    Figure 7.  Variation of hydrogen cloud volume with longitudinal ventilation velocity in flammability limit

    图 8  不同危险级别对应的可燃氢云体积随纵向风速的变化

    Figure 8.  Variation of combustible hydrogen cloud volume corresponding to different hazard levels with longitudinal ventilation velocity

    表  1  氢气泄漏参数

    Table  1.   Hydrogen leakage parameters

    参数实际工况伪直径状态
    直径/mm2.2531.05
    温度/K300300
    压力/MPa70.00.1
    质量流率/(kg·s−10.130.13
    下载: 导出CSV

    表  2  爆炸冲击波超压对人员的伤害[11]

    Table  2.   Damage of explosion shock wave overpressure to personnel[11]

    等级超压/MPa对人员的伤害情况
    LA1(0.02,003]轻微损伤
    LA2(0.03,0.05]听觉器官损伤或骨折
    LA3(0.05,0.10]内脏严重损伤或死亡
    LA4>0.10大部分人员死亡
    下载: 导出CSV

    表  3  爆炸冲击波超压对建筑物的破坏[11]

    Table  3.   Damage of explosion shock wave overpressure to buildings[11]

    等级超压/MPa对建筑物的破坏情况
    LB1(0.07,0.10]砖墙倒塌
    LB2(0.10,0.20]防震钢筋混凝土破坏,
    小房屋倒塌
    LB3(0.20,0.30]大型钢架结构破坏
    下载: 导出CSV

    表  4  可燃氢气当量比范围

    Table  4.   Combustible hydrogen equivalence ratio range

    等级可燃氢气当量比范围爆炸极限/%
    LA1[0.309,0.341][11.5,12.5]
    LA2(0.341,0.395](12.5,14.2]
    LA3(0.395,0.493](14.2,17.2]
    LA4(0.493,7.14](17.2,75.0]
    LB1[0.439,0.493][15.6,17.2]
    LB2(0.493,0.677]
    (2.413,3.57]
    (17.2,22.2]
    (50.3,59.9]
    LB3(0.677,0.933]
    (1.749,2.413]
    (22.2,28.2]
    (42.4,50.3]
    下载: 导出CSV
  • [1] 刘群,张红林,官思发,等. 发展氢能产业的调研与思考[J]. 高科技与产业化,2020(10): 59-63.

    LIU Qun, ZHANG Honglin, GUAN Sifa, et al. Investigation and consideration on developing the hydrogen energy industry[J]. High-Technology & Commercialization, 2020(10): 59-63.
    [2] 于蓬,王健,郑金凤,等. 氢能利用与发展综述[J]. 汽车实用技术,2019(24): 22-25. doi: 10.16638/j.cnki.1671-7988.2019.24.008

    YU Peng, WANG Jian, ZHENG Jinfeng, et al. Review on hydrogen energy utilization and development[J]. Automobile Applied Technology, 2019(24): 22-25. doi: 10.16638/j.cnki.1671-7988.2019.24.008
    [3] KRAUSE H, PFEIL A. Reaction products of energetic materials heated by short laser pulses[M]//Advances in Chemical Reaction Dynamics. Dordrecht: Springer Netherlands, 1986: 455-458.
    [4] 陈长坤,雷鹏,史聪灵,等. 公路隧道内氢气和丙烷爆炸数值模拟对比分析[J]. 中国安全生产科学技术,2017,13(1): 151-155.

    CHEN Changkun, LEI Peng, SHI Congling, et al. Comparative numerical simulation analysis on explosion of hydrogen and propane in highway tunnel[J]. Journal of Safety Science and Technology, 2017, 13(1): 151-155.
    [5] GROETHE M. Large-scale hydrogen deflagrations and detonations[J]. International Journal of Hydrogen Energy, 2007, 32(13): 2125-2133. doi: 10.1016/j.ijhydene.2007.04.016
    [6] MUKAI S, SUZUKI J, MITSUISHI H, et al. CFD simulation of diffusion of hydrogen leakage caused by fuel cell vehicle accident in tunnel, underground parking lot and multistory parking garage[J]. JARI Research Journal, 2005, 27(9): 293-311.
    [7] MUKAI S, SUZUKI J, MITSUISHI H, et al. CFD simulation of diffusion of hydrogen leakage caused by fuel cell vehicle accident in tunnel, underground parking lot and multistory parking garage[C]//19th International Technical Conference on the Enhanced Safety of Vehicles (ESV 2005). Washington, D. C.: National Highway Traffic Safety Administration, 2005: 1511-1519.
    [8] BIE H Y. Simulation analysis on the risk of hydrogen releases and combustion in subsea tunnels[J]. International Journal of Hydrogen Energy, 2017, 42(11): 7617-7624. doi: 10.1016/j.ijhydene.2016.05.263
    [9] LAFLEUR C B, BRAN ANLEU G A, MUNA A B, et al. Hydrogen fuel cell electric vehicle tunnel safety study[R]. New Mexico: Sandia National Lab, 2017.
    [10] BIRCH A D, BROWN D R, DODSON M G, et al. The structure and concentration decay of high pressure jets of natural gas[J]. Combustion Science and Technology, 1984, 36(5/6): 249-261.
    [11] 李伟平. 富春江通航隧道火灾爆炸事故逃生疏散及结构安全性研究[D]. 长沙: 中南大学, 2009.
    [12] ZHANG S. Effects of equivalence ratio, thickness of rupture membrane and vent area on vented hydrogen-air deflagrations in an end-vented duct with an obstacle[J]. International Journal of Hydrogen Energy, 2019, 44(47): 26100-26108. doi: 10.1016/j.ijhydene.2019.08.057
    [13] 王福军. 计算流体动力学分析: CFD软件原理与应用[M]. 北京: 清华大学出版社, 2004.
    [14] 李鹏飞, 徐敏义, 王飞飞. 精通CFD工程仿真与案例实战[M]. 北京: 人民邮电出版社, 2011.
    [15] QIAN J Y. A numerical study of hydrogen leakage and diffusion in a hydrogen refueling station[J]. International Journal of Hydrogen Energy, 2020, 45(28): 14428-14439. doi: 10.1016/j.ijhydene.2020.03.140
  • 加载中
图(8) / 表(4)
计量
  • 文章访问数:  276
  • HTML全文浏览量:  123
  • PDF下载量:  49
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-04-02
  • 修回日期:  2022-09-26
  • 网络出版日期:  2023-10-12
  • 刊出日期:  2022-10-13

目录

    /

    返回文章
    返回