Explosion Hazard Analysis of Leaked Hydrogen in Tunnels Under Longitudinal Ventilation
-
摘要:
为研究纵向通风能否有效控制隧道中泄漏氢气的扩散以及降低可燃氢云的超压危害,本文以一长100 m的方形隧道为研究对象,利用FLUENT软件对隧道内氢气泄漏扩散现象进行数值模拟,基于可燃氢云爆炸超压对人和建筑物的危害分级,分析纵向通风降低隧道内氢气泄漏爆炸危害性的作用效果. 研究结果表明:计算工况下,隧道内发生氢气射流火灾时的纵向风速范围为6.5~8.0 m/s;纵向通风能够有效控制隧道内氢气的泄漏和扩散,但不能完全消除隧道氢泄漏爆炸的可能性和危害性.
Abstract:In order to investigate whether longitudinal ventilation can effectively control the diffusion of leaked hydrogen in tunnels and reduce the overpressure hazards of flammable hydrogen clouds, a square tunnel with a length of 100 m was studied. The hydrogen leakage and diffusion process in the tunnel were numerically simulated by using FLUENT software. Based on the classification of damage of combustible hydrogen cloud explosion overpressure to people and buildings, the effect of longitudinal ventilation on reducing the harm of hydrogen leakage and explosion in the tunnel was analyzed. The results show that under calculated conditions, the longitudinal ventilation velocity in the case of a hydrogen jet fire in the tunnel is 6.5–8.0 m/s. Longitudinal ventilation can effectively control the leakage and diffusion of hydrogen in the tunnel, but it fails to eliminate the explosion possibility and harm of hydrogen leakage in the tunnel.
-
表 1 氢气泄漏参数
Table 1. Hydrogen leakage parameters
参数 实际工况 伪直径状态 直径/mm 2.25 31.05 温度/K 300 300 压力/MPa 70.0 0.1 质量流率/(kg·s−1) 0.13 0.13 等级 超压/MPa 对人员的伤害情况 LA1 (0.02,003] 轻微损伤 LA2 (0.03,0.05] 听觉器官损伤或骨折 LA3 (0.05,0.10] 内脏严重损伤或死亡 LA4 >0.10 大部分人员死亡 等级 超压/MPa 对建筑物的破坏情况 LB1 (0.07,0.10] 砖墙倒塌 LB2 (0.10,0.20] 防震钢筋混凝土破坏,
小房屋倒塌LB3 (0.20,0.30] 大型钢架结构破坏 表 4 可燃氢气当量比范围
Table 4. Combustible hydrogen equivalence ratio range
等级 可燃氢气当量比范围 爆炸极限/% LA1 [0.309,0.341] [11.5,12.5] LA2 (0.341,0.395] (12.5,14.2] LA3 (0.395,0.493] (14.2,17.2] LA4 (0.493,7.14] (17.2,75.0] LB1 [0.439,0.493] [15.6,17.2] LB2 (0.493,0.677]
(2.413,3.57](17.2,22.2]
(50.3,59.9]LB3 (0.677,0.933]
(1.749,2.413](22.2,28.2]
(42.4,50.3] -
[1] 刘群,张红林,官思发,等. 发展氢能产业的调研与思考[J]. 高科技与产业化,2020(10): 59-63.LIU Qun, ZHANG Honglin, GUAN Sifa, et al. Investigation and consideration on developing the hydrogen energy industry[J]. High-Technology & Commercialization, 2020(10): 59-63. [2] 于蓬,王健,郑金凤,等. 氢能利用与发展综述[J]. 汽车实用技术,2019(24): 22-25. doi: 10.16638/j.cnki.1671-7988.2019.24.008YU Peng, WANG Jian, ZHENG Jinfeng, et al. Review on hydrogen energy utilization and development[J]. Automobile Applied Technology, 2019(24): 22-25. doi: 10.16638/j.cnki.1671-7988.2019.24.008 [3] KRAUSE H, PFEIL A. Reaction products of energetic materials heated by short laser pulses[M]//Advances in Chemical Reaction Dynamics. Dordrecht: Springer Netherlands, 1986: 455-458. [4] 陈长坤,雷鹏,史聪灵,等. 公路隧道内氢气和丙烷爆炸数值模拟对比分析[J]. 中国安全生产科学技术,2017,13(1): 151-155.CHEN Changkun, LEI Peng, SHI Congling, et al. Comparative numerical simulation analysis on explosion of hydrogen and propane in highway tunnel[J]. Journal of Safety Science and Technology, 2017, 13(1): 151-155. [5] GROETHE M. Large-scale hydrogen deflagrations and detonations[J]. International Journal of Hydrogen Energy, 2007, 32(13): 2125-2133. doi: 10.1016/j.ijhydene.2007.04.016 [6] MUKAI S, SUZUKI J, MITSUISHI H, et al. CFD simulation of diffusion of hydrogen leakage caused by fuel cell vehicle accident in tunnel, underground parking lot and multistory parking garage[J]. JARI Research Journal, 2005, 27(9): 293-311. [7] MUKAI S, SUZUKI J, MITSUISHI H, et al. CFD simulation of diffusion of hydrogen leakage caused by fuel cell vehicle accident in tunnel, underground parking lot and multistory parking garage[C]//19th International Technical Conference on the Enhanced Safety of Vehicles (ESV 2005). Washington, D. C.: National Highway Traffic Safety Administration, 2005: 1511-1519. [8] BIE H Y. Simulation analysis on the risk of hydrogen releases and combustion in subsea tunnels[J]. International Journal of Hydrogen Energy, 2017, 42(11): 7617-7624. doi: 10.1016/j.ijhydene.2016.05.263 [9] LAFLEUR C B, BRAN ANLEU G A, MUNA A B, et al. Hydrogen fuel cell electric vehicle tunnel safety study[R]. New Mexico: Sandia National Lab, 2017. [10] BIRCH A D, BROWN D R, DODSON M G, et al. The structure and concentration decay of high pressure jets of natural gas[J]. Combustion Science and Technology, 1984, 36(5/6): 249-261. [11] 李伟平. 富春江通航隧道火灾爆炸事故逃生疏散及结构安全性研究[D]. 长沙: 中南大学, 2009. [12] ZHANG S. Effects of equivalence ratio, thickness of rupture membrane and vent area on vented hydrogen-air deflagrations in an end-vented duct with an obstacle[J]. International Journal of Hydrogen Energy, 2019, 44(47): 26100-26108. doi: 10.1016/j.ijhydene.2019.08.057 [13] 王福军. 计算流体动力学分析: CFD软件原理与应用[M]. 北京: 清华大学出版社, 2004. [14] 李鹏飞, 徐敏义, 王飞飞. 精通CFD工程仿真与案例实战[M]. 北京: 人民邮电出版社, 2011. [15] QIAN J Y. A numerical study of hydrogen leakage and diffusion in a hydrogen refueling station[J]. International Journal of Hydrogen Energy, 2020, 45(28): 14428-14439. doi: 10.1016/j.ijhydene.2020.03.140