• ISSN 0258-2724
  • CN 51-1277/U
  • EI Compendex
  • Scopus 收录
  • 全国中文核心期刊
  • 中国科技论文统计源期刊
  • 中国科学引文数据库来源期刊

基于混合加点Kriging代理模型的高速列车头型气动多目标优化

戴志远 李田 张卫华 张继业

戴志远, 李田, 张卫华, 张继业. 基于混合加点Kriging代理模型的高速列车头型气动多目标优化[J]. 西南交通大学学报, 2024, 59(1): 46-53. doi: 10.3969/j.issn.0258-2724.20220218
引用本文: 戴志远, 李田, 张卫华, 张继业. 基于混合加点Kriging代理模型的高速列车头型气动多目标优化[J]. 西南交通大学学报, 2024, 59(1): 46-53. doi: 10.3969/j.issn.0258-2724.20220218
DAI Zhiyuan, LI Tian, ZHANG Weihua, ZHANG Jiye. Multi-objective Aerodynamic Optimization on Head Shape of High-Speed Train Using Kriging Surrogate Model with Hybrid Infill Criterion[J]. Journal of Southwest Jiaotong University, 2024, 59(1): 46-53. doi: 10.3969/j.issn.0258-2724.20220218
Citation: DAI Zhiyuan, LI Tian, ZHANG Weihua, ZHANG Jiye. Multi-objective Aerodynamic Optimization on Head Shape of High-Speed Train Using Kriging Surrogate Model with Hybrid Infill Criterion[J]. Journal of Southwest Jiaotong University, 2024, 59(1): 46-53. doi: 10.3969/j.issn.0258-2724.20220218

基于混合加点Kriging代理模型的高速列车头型气动多目标优化

doi: 10.3969/j.issn.0258-2724.20220218
基金项目: 国家重点研发计划(2020YFA0710902);国家自然科学基金(12372049);四川省科技计划(2023JDRC0062);中央高校基本科研业务费(2682023ZTPY036)
详细信息
    作者简介:

    戴志远(1996—),男,博士研究生,研究方向列车空气动力学,E-mail:daizhiyuan18@my.swjtu.edu.cn

    通讯作者:

    李田(1984—),男,副研究员,研究方向列车空气动力学,E-mail:litian2008@home.swjtu.edu.cn

  • 中图分类号: U271

Multi-objective Aerodynamic Optimization on Head Shape of High-Speed Train Using Kriging Surrogate Model with Hybrid Infill Criterion

  • 摘要:

    在高速列车多目标气动优化设计中,结合传统加点准则建立的代理模型在初始抽样样本点较少时寻优效率较低. 为提高优化效率,本文融合改善期望加点准则(EIC)及Pareto前沿解加点准则(PIC),提出混合加点准则(HIC)方法,并基于HIC方法建立Kriging代理模型,以高速列车头车气动阻力、尾车气动阻力及尾车气动升力最小为优化目标,开展高速列车头型多目标气动优化研究;并以Branin单目标测试函数和Poloni多目标测试函数为例,对比分析EIC、PIC和HIC 3种代理模型的收敛速度. 结果表明:单目标优化中,相比于EIC和HIC代理模型,HIC代理模型的寻优效率提高50.0%;多目标优化中,与PIC代理模型相比,HIC代理模型的效率提高62.5%;采用HIC代理模型开展头型多目标气动优化得到的最优解模型与原始模型相比,高速列车头车气动阻力、尾车气动阻力和尾车气动升力分别降低1.6%、1.7%和3.0%;最优解模型的鼻尖高度、车钩区域高度及司机室视窗高度都有所降低,2条横向轮廓线内缩.

     

  • 图 1  单目标Branin函数最优解误差收敛历程

    Figure 1.  Error convergence process of optimal solution for single-objective Branin function

    图 2  Poloni函数Pareto前沿误差

    Figure 2.  Pareto frontier error of Poloni function

    图 3  数值模拟计算几何模型

    Figure 3.  Geometry model of numerical simulation

    图 4  计算区域

    Figure 4.  Computational domain

    图 5  设计变量及其变化区间

    Figure 5.  Design variables and its variation intervals

    图 6  列车头型多目标优化收敛历程

    Figure 6.  Convergence process of multi-objective optimization of high-speed train head shape

    图 7  优化设计的Pareto前沿解集

    Figure 7.  Pareto frontier solution of optimization design

    图 8  最优解与原始模型对比

    Figure 8.  Comparison between optimal solution and original model

    图 9  列车表面压力及压力系数分布

    Figure 9.  Distribution of surface pressure and pressure coefficient of train

  • [1] JEONG S, MURAYAMA M, YAMAMOTO K. Efficient optimization design method using kriging model[J]. Journal of Aircraft, 2005, 42(2): 413-420. doi: 10.2514/1.6386
    [2] KUHNT S, STEINBERG D M. Design and analysis of computer experiments[J]. AStA Advances in Statistical Analysis, 2010, 94(4): 307-309. doi: 10.1007/s10182-010-0143-0
    [3] FORRESTER A I J, KEANE A J. Recent advances in surrogate-based optimization[J]. Progress in Aerospace Sciences, 2009, 45(1/2/3): 50-79.
    [4] WANG Q Q, MOIN P, IACCARINO G. A rational interpolation scheme with superpolynomial rate of convergence[J]. SIAM Journal on Numerical Analysis, 2010, 47(6): 4073-4097. doi: 10.1137/080741574
    [5] 韩忠华. Kriging模型及代理优化算法研究进展[J]. 航空学报,2016,37(11): 3197-3225.

    HAN Zhonghua. Kriging surrogate model and its application to design optimization: a review of recent progress[J]. Acta Aeronautica et Astronautica Sinica, 2016, 37(11): 3197-3225.
    [6] SUN Z X, SONG J J, AN Y R. Optimization of the head shape of the CRH3 high speed train[J]. Science China: Technological Sciences, 2010, 53(12): 3356-3364. doi: 10.1007/s11431-010-4163-5
    [7] LEE J, KIM J. Approximate optimization of high-speed train nose shape for reducing micropressure wave[J]. Structural and Multidisciplinary Optimization, 2008, 35(1): 79-87.
    [8] YAO S B, GUO D L, SUN Z X, et al. Optimization design for aerodynamic elements of high speed trains[J]. Computers & Fluids, 2014, 95: 56-73.
    [9] YAO S B, GUO D L, SUN Z X, et al. Parametric design and optimization of high speed train nose[J]. Optimization and Engineering, 2016, 17(3): 605-630. doi: 10.1007/s11081-015-9298-6
    [10] ZHANG N, WANG P, DONG H C, et al. Shape optimization for blended-wing–body underwater glider using an advanced multi-surrogate-based high-dimensional model representation method[J]. Engineering Optimization, 2020, 52(12): 2080-2099. doi: 10.1080/0305215X.2019.1694674
    [11] 张亮,张继业,李田,等. 超高速列车流线型头型多目标优化设计[J]. 机械工程学报,2017,53(2): 106-114. doi: 10.3901/JME.2017.02.106

    ZHANG Liang, ZHANG Jiye, LI Tian, et al. Multi-objective optimization design of the streamlined head shape of super high-speed trains[J]. Journal of Mechanical Engineering, 2017, 53(2): 106-114. doi: 10.3901/JME.2017.02.106
    [12] MUÑOZ-PANIAGUA J, GARCÍA J. Aerodynamic drag optimization of a high-speed train[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2020, 204: 104215.1-104215.15.
    [13] YAO S B, GUO D L, SUN Z X, et al. A modified multi-objective sorting particle swarm optimization and its application to the design of the nose shape of a high-speed train[J]. Engineering Applications of Computational Fluid Mechanics, 2015, 9(1): 513-527. doi: 10.1080/19942060.2015.1061557
    [14] ZHANG L, LI T, ZHANG J Y, et al. Optimization on the crosswind stability of trains using neural network surrogate model[J]. Chinese Journal of Mechanical Engineering, 2021, 34(1): 1-17. doi: 10.1186/s10033-020-00524-5
    [15] SEKISHIRO M, VENTER G, BALABANOV V. Combined kriging and gradient-based optimization method[C]//Proceedings of the 11th AIAA/ISSMO Multidisciplinary Analysis and Optimization Conference. Portsmouth: AIAA, 2006: 7091.13-7091.13.
    [16] FORRESTER A I J, SÓBESTER A, KEANE A J. Engineering design via surrogate modelling: a practical guide[M]. Chichester: John Wiley and Sons, Ltd., 2008
    [17] PARK J S. Optimal Latin-hypercube designs for computer experiments[J]. Journal of Statistical Planning and Inference, 1994, 39(1): 95-111. doi: 10.1016/0378-3758(94)90115-5
    [18] POLONI C, GIURGEVICH A, ONESTI L, et al. Hybridization of a multi-objective genetic algorithm, a neural network and a classical optimizer for a complex design problem in fluid dynamics[J]. Computer Methods in Applied Mechanics and Engineering, 2000, 186(2/3/4): 403-420.
    [19] LI T, DAI Z Y, YU M G, et al. Numerical investigation on the aerodynamic resistances of double-unit trains with different gap lengths[J]. Engineering Applications of Computational Fluid Mechanics, 2021, 15(1): 549-560. doi: 10.1080/19942060.2021.1895321
    [20] LI T, HEMIDA H, ZHANG J Y, et al. Comparisons of shear stress transport and detached eddy simulations of the flow around trains[J]. Journal of Fluids Engineering, 2018, 140(11): 111108.1-111108.12.
    [21] LI T, LI M, WANG Z, et al. Effect of the inter-car gap length on the aerodynamic characteristics of a high-speed train[J]. Proceedings of the Institution of Mechanical Engineers, Part F: Journal of Rail and Rapid Transit, 2019, 233(4): 448-465. doi: 10.1177/0954409718799809
    [22] 国家铁路局. 铁路应用 · 空气动力学 · 第4部分: 列车空气动力学性能数值仿真规范: TB/T 3503.4—2018[S]. 北京: 中国铁道出版社, 2018.
  • 加载中
图(9)
计量
  • 文章访问数:  238
  • HTML全文浏览量:  164
  • PDF下载量:  40
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-03-23
  • 修回日期:  2022-09-19
  • 网络出版日期:  2023-11-18
  • 刊出日期:  2022-09-19

目录

    /

    返回文章
    返回