• ISSN 0258-2724
  • CN 51-1277/U
  • EI Compendex
  • Scopus 收录
  • 全国中文核心期刊
  • 中国科技论文统计源期刊
  • 中国科学引文数据库来源期刊

轨道交通“网-源-储-车”协同供能技术体系

高仕斌 罗嘉明 陈维荣 胡海涛 涂春鸣 陈艳波 肖凡 王飞宽

马恺泽, 韩潇, 何腾伟, 白景柱. FRP约束UHPC圆形短柱轴心受压性能研究[J]. 西南交通大学学报, 2024, 59(5): 1132-1139. doi: 10.3969/j.issn.0258-2724.20220332
引用本文: 高仕斌, 罗嘉明, 陈维荣, 胡海涛, 涂春鸣, 陈艳波, 肖凡, 王飞宽. 轨道交通“网-源-储-车”协同供能技术体系[J]. 西南交通大学学报, 2024, 59(5): 959-979, 989. doi: 10.3969/j.issn.0258-2724.20220210
MA Kaize, HAN Xiao, HE Tengwei, BAI Jingzhu. Investigation of FRP-Confined UHPC Circular Stub Columns Under Axial Compression[J]. Journal of Southwest Jiaotong University, 2024, 59(5): 1132-1139. doi: 10.3969/j.issn.0258-2724.20220332
Citation: GAO Shibin, LUO Jiaming, CHEN Weirong, HU Haitao, TU Chunming, CHEN Yanbo, XIAO Fan, WANG Feikuan. Rail Transit “Network-Source-Storage-Vehicle” Collaborative Energy Supply Technology System[J]. Journal of Southwest Jiaotong University, 2024, 59(5): 959-979, 989. doi: 10.3969/j.issn.0258-2724.20220210

轨道交通“网-源-储-车”协同供能技术体系

doi: 10.3969/j.issn.0258-2724.20220210
基金项目: 国家重点研发计划(2021YFB2601500)
详细信息
    作者简介:

    高仕斌(1964—),男,教授,博士,研究方向为变电站综合自动化与继电保护,E-mail:gao_shi_bin@126.com

  • 中图分类号: U223.1

Rail Transit “Network-Source-Storage-Vehicle” Collaborative Energy Supply Technology System

  • 摘要:

    为降低轨道交通系统牵引能耗,轨道交通“网-源-储-车”协同供能技术通过可再生能源的就地消纳,构建新型协同供能技术体系,实现跨时空高效用能. 针对此新型供电系统结构,本文全面分析协同供能系统的物理架构、信息架构和社会架构的基本组成及类型特征;在此基础上,围绕资产能源化的基本概念,总结“荷-源”时空匹配评估方法与优化技术,并从系统角度阐述多源融合技术、保护重构、弹性评估等重要技术体系;重点分析“网-源-储-车”协同的高效能与高弹性的能源自洽技术,并基于人工智能和信息技术构建多层级能量管控系统,实现不同能量流的高效耦合,保障系统安全稳定经济运行. 本文系统性地总结了轨道交通“网-源-储-车”协同供能系统的架构特征、评估优化、安全运维及协同运行等关键技术,阐述协同供能系统的技术组成体系,为协同供能系统的工程实践提供相应参考.

     

  • 纤维增强复合材料(FRP)轻质、高强,且热膨胀系数与混凝土相近,可与混凝土变形协调,具有裁剪不易松散变形、易于浸溃、施工便捷等优点[1-2]. 超高性能混凝土(UHPC)是一种高强、高韧和高耐久性的新型水泥基复合材料,具有优异的力学性能和耐久性[3-4]. 用FRP侧向约束UHPC,可以充分发挥UHPC和FRP的优点,提高核心UHPC的强度和变形能力[5].

    Lam等[6]对18个FRP约束UHPC短柱进行了轴压试验研究发现,在FRP约束下UHPC短柱的极限强度和应变显著提高. Guler[7]对碳纤维增强复合材料(CFRP)、玻璃纤维增强复合材料(GFRP)和芳纶纤维增强复合材料(AFRP)约束UHPC圆柱进行了轴向加载,并对不同纤维增强复合材料对UHPC圆柱极限强度和应变的提升程度做了对比分析. Wang等[8]对FRP约束UHPC的轴压性能进行研究,并比较FRP对UHPC、高强混凝土和普通混凝土约束性能,结果表明,由于FRP约束的UHPC具有超高强度和独特的微观结构,比FRP约束的NSC和HSC表现出更多的脆性. 邓宗才等[9-10]对FRP约束UHPC圆柱进行轴心抗压试验,结果表明,约束比和侧向约束刚度是影响试件极限强度和极限应变的关键参数,FRP的约束作用对核心UHPC的强度和延性具有提高效果. 黄美珍[11]基于细观力学方法对UHPC本构模型受钢纤维掺量的影响进行研究发现,适量的钢纤维能够显著提高UHPC的峰值应变与轴心抗压强度. 田会文等[12]利用LS-DYNA建立FRP约束UHPC圆柱细观有限元模型,研究FRP厚度、纤维缠绕角度和钢纤维体积掺量对其轴压性能的影响,结果表明,FRP显著提高核心UHPC的极限强度和延性.

    目前,国内外对FRP约束UHPC圆形短柱轴心受压力学性能的研究大多都是基于FRP层数、混凝土强度等变量的研究,对钢纤维影响短柱轴压性能的研究相对较少. 同时,现有研究多集中于单一变量对短柱轴压性能的影响,对多个变量耦合作用的研究较少,且缺少多个变量下短柱轴压性能的对比分析. 此外,现有研究中对FRP约束UHPC本构模型的理论分析也有待深入.

    为此,本文以FRP层数、FRP种类和钢纤维体积掺量为变量,研究FRP约束UHPC圆形短柱的轴压性能及变量的影响规律;并在考虑钢纤维体积掺量的影响下,提出FRP约束UHPC圆形短柱抗压强度和极限应变的计算模型,并进一步给出FRP约束UHPC的本构模型.

    试验共设计制作21组FRP约束UHPC圆形短柱和3组UHPC圆形短柱,所有试件的高度均为200 mm,直径均为100 mm. 试件编号见表1,表中:首字母“P”代表无约束试件,“G”表示GFRP约束UHPC圆形短柱,“C”表示CFRP约束UHPC圆形短柱,N为试件的峰值荷载;ɛy为试件的轴向极限应变.

    表  1  试件编号及试验结果
    Table  1.  Specimen numbering and experimental results
    试件
    编号
    钢纤维掺量/%FRP 层数/层N/kNɛy试件
    编号
    钢纤维掺量/%FRP 层数/层N/kNɛy
    P11805.00.0024G32321392.20.0088
    P22874.20.0029G33331511.90.0120
    P33917.30.0029G34341657.50.0148
    G11111197.10.0044C11111312.90.0056
    G12121318.10.0063C12121546.40.0087
    G13131409.60.0082C13131787.30.0138
    G14141532.80.0106C21211336.00.0073
    G21211239.30.0061C22221675.70.0125
    G22221351.60.0080C23231931.90.0176
    G23231469.50.0109C31311375.40.0084
    G24241620.40.0136C32321696.80.0145
    G31311283.10.0075C33332065.10.0210
    下载: 导出CSV 
    | 显示表格

    UHPC的配合比见表2. 根据T/CECS864−2021《超高性能混凝土试验方法标准》[13]对UHPC进行抗压强度试验,试件制作时浇筑3组边长为100 mm、钢纤维体积掺量分别为1%、2%和3%的UHPC立方体,立方体的尺寸符合GB/T 50081—2016《普通混凝土拌合物性能试验方法标准》[14]的有关规定. 测得3组立方体的平均抗压强度分别为129.2、144.5、153.3 MPa. FRP力学性能指标见表3.

    表  2  UHPC的配合比
    Table  2.  Mix proportion of UHPC kg/m3
    名称水胶比水泥硅灰石英砂粉煤灰
    配合比0.151.000.321.460.30
    下载: 导出CSV 
    | 显示表格
    表  3  FRP的性能指标
    Table  3.  Performance index of FRP
    型号抗拉强度/MPa弹性模量/GPa伸长率/%
    GFRP23811142.7
    CFRP39612401.8
    下载: 导出CSV 
    | 显示表格

    试验采用的加载设备为200 t压力试验机,如图1. 加载前,应先进行预压,以保证试件轴心受压,并对位移传感器和应变片进行检查和校正;正式加载时,加载速率控制为1.5 kN/s;当荷载达到试件计算强度的90%时,加载速率控制为0.5 kN/s;直到试件破坏后,卸载.

    图  1  试验加载装置
    Figure  1.  Test loading device

    试件应变测点的布置如图2所示,在试件的中部布置4个轴向应变片测量其轴向应变,并将4个环向应变片垂直于轴向应变片布置,用以测量试件的环向应变. 此外,轴向位移通过固定装置两侧的位移传感器获得,荷载由数据采集系统自动采集.

    图  2  应变片的分布
    Figure  2.  Distribution of strain gauges
    2.1.1   GFRP约束UHPC的破坏特征

    GFRP约束UHPC圆形短柱的破坏形态如 图3(a)~(d)所示. 在加载初期,试件变形微小,导致GFRP未对其产生约束作用;随着荷载的增加,GFRP发出噼啪裂开的声音;当荷载接近极限强度的90%时,UHPC圆形短柱中部的GFRP逐渐断裂;当试件加载至极限强度时,爆裂声响加剧,试件中部的GFRP断裂频率加快,直至整节断裂,试件破坏.

    图  3  试件破坏形态
    Figure  3.  Failure modes of specimens
    2.1.2   CFRP约束UHPC的破坏特征

    CFRP约束UHPC圆形短柱的破坏形态如图3(e)~(h)所示. 在加载初期,试件无明显变形,CFRP未对其产生约束作用;随着荷载的逐步增加,偶尔听到CFRP破裂的声音,且UHPC圆形短柱中部开始膨胀,CFRP对其约束力也逐渐增强;直至荷载达到试件极限强度的90%时,试样发生显著变形,CFRP从拐角处逐渐断裂,开始与UHPC圆形短柱剥离;当试件加载至极限强度时,CFRP发出爆响,随即被拉断,试件强度急剧下降,此时,UHPC圆形短柱表面产生纵向裂缝,且裂缝贯通至整个试件,轴向应变和环向应变迅速增大,试件破坏.

    图3可知,随着FRP层数增加,其断裂面积逐渐减小. 钢纤维沿裂缝面被拔出,但由于钢纤维在UHPC内部多向分布,发挥了桥接作用,有效阻止了混凝土内部裂缝的扩大和延伸,因此,试件内部的UHPC并没有完全破碎. 钢纤维能够在一定程度上改善FRP约束UHPC圆形短柱的脆性破坏.

    图4为FRP约束UHPC圆形短柱的荷载-应变曲线(应变大于0为轴向应变,小于0为环向应变). 从图中可以看出,荷载-轴向应变曲线可分为3个阶段:在加载初期,各试件荷载-应变曲线的变化趋势基本相同,此时试件变形较小,FRP对UHPC圆形短柱产生的约束作用不明显,约束试件的荷载-轴向应变曲线与未约束试件的相似,均呈线性增长;随着荷载的进一步增大,UHPC圆形短柱中部开始膨胀,FRP产生的约束应力随之增加,试件的强度不断提高,此阶段的约束应力不断变化,试件的曲线呈非线性发展;在加载后期,FRP对UHPC圆形短柱的约束应力达到极限,试件的荷载-轴向应变曲线基本呈水平发展趋势,该阶段为试件的强化阶段,对比发现,FRP提高了UHPC圆形短柱的强度和变形能力.

    图  4  FRP约束UHPC的荷载-应变曲线
    Figure  4.  Load-strain curves of FRP-confined UHPC

    FRP约束UHPC圆形短柱的荷载-环向应变曲线同样可分为3个阶段:在初期加载阶段,其与荷载-轴向应变曲线相似,FRP基本没有对试件产生明显的约束作用,曲线呈线性增长趋势,同时,各约束试件在此阶段的荷载-环向应变曲线基本重合,未受到FRP层数的影响;随着荷载的增加,约束试件的中部开始膨胀,环向应变的增长速率加快,同时,UHPC圆形短柱承受较大荷载,FRP的约束力不断增加,此阶段约束试件的荷载-环向应变曲线呈非线性增长;随着荷载的持续增加,FRP的约束应力达到极限,环向应变迅速增大,直至试件破坏.

    2.3.1   约束比

    定义FRP对UHPC圆形短柱的约束应力与无约束UHPC圆形短柱抗压强度的比值为约束比[10]. 不同约束比下试件的承载及变形性能如表1图4所示. 可以看出:试件C12、C22和C32的极限强度相较于C11、C21和C31分别提高了17.8%、25.4%和23.4%,极限应变分别提高了55.4%、71.2%和72.6%;试件G12、G22和G32的极限强度相较于G11、G21和G31分别提高了10.1%、9.1%和8.5%,极限应变分别提高了43.2%、31.1%和17.3%. 由此可得,随着FRP层数的增加,试件的轴向极限强度和极限应变均得到提高,但极限应变的提高幅度更加明显.

    钢纤维体积掺量为1%时,被1层、2层和3层CFRP缠绕包裹的UHPC圆形短柱的极限强度比同条件下的GFRP缠绕包裹的分别提高了9.7%、7.8%和7.2%;钢纤维体积掺量为2%时,上述条件下试件的极限强度分别提高了17.3%、24%和21.9%,极限应变分别提高了38.1%、56.3%和64.8%. 可以看出,CFRP对UHPC圆形短柱极限强度和极限应变的改善程度要明显优于GFRP. 此外,FRP层数和种类的改变实质上反映的是约束应力的改变,由此可见,约束比是影响试件荷载-应变曲线的关键因素.

    2.3.2   钢纤维体积掺量

    不同钢纤维掺量下试件的极限强度及变形性能如表1图4所示. 由不同钢纤维体积掺量下FRP约束UHPC圆形短柱的荷载-轴向应变曲线可知:随着钢纤维体积掺量的增加,荷载-轴向应变曲线在加载前期并没有受到影响;但在加载后期,试件的极限强度及极限应变均有一定幅度的提高. 而根据试件的荷载-环向应变曲线发现:钢纤维体积掺量为2%和3%时,试件在相同荷载下的环向应变明显比钢纤维体积掺量为1%的试件小,说明钢纤维的体积掺量越大,核心混凝土的极限强度和延性越大. 由此可知,随着加载荷载的增加,钢纤维在UHPC圆形短柱中产生了防止其自身横向膨胀的纤维约束力,在加载后期明显抑制了UHPC圆形短柱的横向变形;且钢纤维体积掺量越大,产生的约束作用越强.

    在加载初期,FRP材料并未产生明显的约束作用. 随着荷载的持续增加,UHPC圆形短柱在受压状态下内部逐渐出现微裂纹,试件的变形逐渐增大并产生侧向膨胀,环向应变迅速增长,此时外包FRP开始参与工作,对核心混凝土提供有效约束,使核心混凝土处于三向受力状态,并限制其裂缝的产生和发展. 随着荷载继续增加,混凝土进入裂缝扩展阶段,其内部裂缝及侧向变形快速增大,FRP产生的约束应力不断提高,直至其达到极限抗拉强度,发生断裂,此时FRP约束UHPC圆形短柱的轴压荷载达到峰值. FRP约束UHPC圆形短柱受力状态如图5所示,图中:fcccfcocεcccεcoc)分别为约束试件、非约束试件的峰值应力(极限应变),σr为径向应力,σ为短柱的轴向应力,ε为短柱的环向应变.

    图  5  FRP约束UHPC圆形短柱受力示意
    Figure  5.  Force of FRP-confined UHPC circular stub column

    根据已有研究[15-16]可知,FRP是高性能单向材料,抗拉不抗压,因此在理论分析时仅考虑FRP的环向抗拉强度. 当FRP达到其极限抗拉强度时,将不会再对混凝土产生约束作用[17],FRP约束UHPC圆形短柱时,其侧向受力均匀连续,如图6所示. 图中:ff为FRP的极限抗拉强度,θ 为约束力方向与x轴之间夹角的大小.

    图  6  约束力计算模型
    Figure  6.  Calculation model of constraining force

    根据平衡原理积分可得侧向约束力为

    π0d/2flsinθdθ=2fft
    (1)

    式中:fl为FRP对UHPC的约束力,如式(2);d为UHPC 圆形短柱的直径;t为FRP的总厚度.

    fl=2fft/d.
    (2)

    考虑到钢纤维对UHPC圆形短柱轴压性能的影响,引入纤维约束力,如式(3).

    flf=α1Vflfdfτbond,
    (3)

    式中:α1为纤维影响系数,取值参考文献[18];Vf为钢纤维掺量;lf为钢纤维的长度;df为钢纤维的直径;τbond为基体黏结强度.

    通过改变试件的约束比及钢纤维体积掺量,研究其对试件峰值参数的影响,各试件的峰值荷载及其对应的轴向极限应变如表1所示. 以试件约束比(fL/fco,其中:fL为FRP约束力fl与钢纤维约束力flf之和,fco为非约束柱的极限强度)为控制因素,通过对试验数据进行回归分析,得到FRP约束UHPC峰值应力及峰值应变拟合曲线,如图7所示.

    图  7  拟合曲线
    Figure  7.  Fitting curves

    图7中:y=(fccc/fcoc)−1,x=fL/fcoc,代入方程最终得FRP约束UHPC的极限抗压强度计算公式,如式(4);y1=(ɛccc/ɛcoc)−1,代入方程得到极限应变的计算公式,如式(5).

    fccc/fcoc=1+2.45(fL/fcoc)0.92,
    (4)
    εccc/εcoc=1+21.75(fL/fcoc)1.62.
    (5)

    为更好地验证所提出模型的合理性,收集文献[10,19-20]中的试验数据进行验证. 表4为文献中FRP约束UHPC柱极限强度及峰值应变的计算值与试验值的对比,其中,fccɛcc分别为极限强度和极限应变的试验值.

    表  4  试件极限强度和极限应变计算值与试验值对比
    Table  4.  Comparison between calculated and test results of ultimate strength and ultimate strain of specimens
    参考文献试件编号Vf/%fcc/MPaɛccfccc/MPaɛcccfccc/fccɛccc/ɛcc
    文献[10] 2130.70.0078175.20.00821.3401.047
    2180.80.0116217.20.01551.2011.332
    2148.80.0073185.30.00971.2451.325
    2162.30.0094211.10.01021.3011.085
    2156.50.0065172.70.00781.1031.202
    2191.40.0104211.80.01441.1071.382
    文献[19] 2226.60.0086264.80.00751.1680.874
    2273.50.0106281.80.00901.0300.853
    2298.90.0115298.20.01070.9980.934
    2254.10.0068267.40.00771.0521.138
    2372.20.0105319.70.01330.8591.263
    文献[20]UHPC-1C1168.00.0068178.10.00571.0600.836
    UHPC-2C1180.80.0073194.20.00711.0740.970
    UHPC-3G1171.50.0076195.00.00721.1370.942
    UHPC-5G1182.00.0073214.50.00941.1781.291
    下载: 导出CSV 
    | 显示表格

    通过上述计算方法所得极限强度计算值与试验值比值的平均值与标准差分别为1.124和0.123,极限应变计算值与试验值比值的平均值与标准差分别为1.098和0.191,这表明计算方法得到的极限应力、极限应变的计算值与试验值较为吻合,考虑钢纤维体积掺量影响后所得的计算公式能够较好地预测FRP约束UHPC的峰值应力和应变.

    通过对已有模型分析,选用Mander[21]本构方程作为FRP约束UHPC圆形短柱的主动约束模型,将fccɛcc代入Mander[21]本构方程,以此得到FRP约束UHPC的本构模型,如式(6)所示.

    σ=fccxcr/(r1+xrc)
    (6)

    式中:xc = ɛc/ɛccɛc为约束柱的轴向应变;r =Ec/(EcEsec),Esec为约束柱达到极限强度时的割线模量,Esec =fcc/ɛccEc为UHPC的弹性模量.

    从21个约束试件中选取6个试件,分别采用Lam模型[22]、Zohrevand模型[19]、邓宗才模型[10]和本文建立的模型,计算得到相应的应力-应变全过程曲线,与试验结果进行对比,如图8所示.

    图  8  应力-应变曲线对比
    Figure  8.  Comparison of stress-strain curves

    图8中:曲线的前期阶段,所有模型与试验结果无较大差异,后期阶段则差异化明显. 综合对比下,本文建立的模型与试验结果吻合程度较好.

    1) 随着FRP层数的增加,UHPC圆形短柱的极限抗压强度和极限应变均提高,但极限应变的提高幅度更加明显. 试件C12、C22和C32的极限强度相较于试件C11、C21和C31分别提高了17.8%、25.4%和23.4%,极限应变分别提高了55.4%、71.2%和72.6%;试件G12、G22和G32的极限强度相较于试件G11、G21和G31分别提高了10.1%、9.1%和8.5%,极限应变分别提高了43.2%、31.1%和17.3%.

    2) 钢纤维可在一定程度上改善FRP约束UHPC圆形短柱的脆性特征;适量的钢纤维还可提高试件的极限抗压强度与极限应变. 试件C31的极限强度和极限应变比试件C21(C11)的分别提高了2.9%和15.1%(4.7%和50.0%).

    3) 相同层数及钢纤维体积掺量下,CFRP对UHPC圆形短柱极限抗压强度和极限应变的提升幅度比GFRP更高. 试件C11、C12和C13的极限应变分别比试件G11、G12和G13的提高了27.3%、19.7%和12.0%.

    4) 分析了FRP约束UHPC圆形短柱的受力机理,在考虑钢纤维体对UHPC约束的影响下,提出了FRP约束UHPC圆形短柱抗压强度和极限应变的计算模型,并进一步给出了FRP约束UHPC的本构模型,计算结果与试验结果吻合较好.

  • 图 1  轨道交通“网-源-储-车”协同供能系统结构

    Figure 1.  “Network-source-storage-vehicle”collaborative energy supply system structure of rail transit

    图 2  基于功率融通设备的互联架构

    Figure 2.  Interconnection architecture based on power fusion equipment

    图 3  基于组合式同相供电的互联架构

    Figure 3.  Interconnection architecture based on combined in-phase power supply

    图 4  基于贯通供电的互联架构

    Figure 4.  Interconnection architecture of continuous power supply

    图 5  基于高压直流贯通线的互联架构

    Figure 5.  Interconnection architecture based on HVDC through lines

    图 6  基于物联网的云边协同信息处理技术架构

    Figure 6.  Cloud-side collaborative information processing technology architecture based on the internet of things

    图 7  牵引供电系统产消者运行模式

    Figure 7.  Operation mode of producer and consumer of traction power supply system

    图 8  源-荷时空匹配度评估及优化方法

    Figure 8.  Source-load space-time matching degree evaluation method

    图 9  “源-储”双层协同优化结构

    Figure 9.  “Source-storage” double-layer collaborative optimization structure

    图 10  广域保护结构

    Figure 10.  Basic structure of wide area protection

    图 11  “网-源-车-储”协同能量管理系统

    Figure 11.  “network-source-vehicle-storage” collaborative energy management system

    图 12  北斗时空量测系统

    Figure 12.  Beidou space-time measurement system

    图 13  多目标在线驾驶优化示意

    Figure 13.  Schematic diagram of multi-objective online driving optimization

  • [1] 中国国家铁路集团有限公司. 中国国家铁路集团有限公司2023年统计公报[Z]. 北京: 中国国家铁路集团有限公司,2024.
    [2] 胡海涛,郑政,何正友,等. 交通能源互联网体系架构及关键技术[J]. 中国电机工程学报,2018,38(1): 12-24,339.

    HU Haitao, ZHENG Zheng, HE Zhengyou, et al. The framework and key technologies of traffic energy Internet[J]. Proceedings of the CSEE, 2018, 38(1): 12-24,339.
    [3] 何正友,向悦萍,廖凯,等. 能源-交通-信息三网融合发展的需求、形态及关键技术[J]. 电力系统自动化,2021,45(16): 73-86.

    HE Zhengyou, XIANG Yueping, LIAO Kai, et al. Demand, form and key technologies of integrated development of energy-transport-information networks[J]. Automation of Electric Power Systems, 2021, 45(16): 73-86.
    [4] 高仕斌,高凤华,刘一谷,等. 自感知能源互联网研究展望[J]. 电力系统自动化,2021,45(5): 1-17.

    GAO Shibin, GAO Fenghua, LIU Yigu, et al. Prospect of research on self-aware energy internet[J]. Automation of Electric Power Systems, 2021, 45(5): 1-17.
    [5] 孙秋野,滕菲,张化光. 能源互联网及其关键控制问题[J]. 自动化学报,2017,43(2): 176-194.

    SUN Qiuye, TENG Fei, ZHANG Huaguang. Energy internet and its key control issues[J]. Acta Automatica Sinica, 2017, 43(2): 176-194.
    [6] 韦晓广,高仕斌,臧天磊,等. 社会能源互联网:概念、架构和展望[J]. 中国电机工程学报,2018,38(17): 4969-4986,5295.

    WEI Xiaoguang, GAO Shibin, ZANG Tianlei, et al. Social energy internet: concept, architecture and outlook[J]. Proceedings of the CSEE, 2018, 38(17): 4969-4986,5295.
    [7] 韦晓广,高仕斌,李多,等. 基于连锁故障网络图和不同攻击方式的输电线路脆弱性分析[J]. 中国电机工程学报,2018,38(2): 465-474,677.

    WEI Xiaoguang, GAO Shibin, LI Duo, et al. Cascading fault graph for the analysis of transmission network vulnerability under different attacks[J]. Proceedings of the CSEE, 2018, 38(2): 465-474,677.
    [8] 胡海涛,葛银波,黄毅,等. 电气化铁路“源–网–车–储”一体化供电技术[J]. 中国电机工程学报,2022,42(12): 4374-4391.

    HU Haitao, GE Yinbo, HUANG Yi, et al. “source-network-train-storage” integrated power supply system for electric railways[J]. Proceedings of the CSEE, 2022, 42(12): 4374-4391.
    [9] 黄文龙,胡海涛,陈俊宇,等. 枢纽型牵引变电所再生制动能量利用系统能量管理及控制策略[J]. 电工技术学报,2021,36(3): 588-598.

    HUANG Wenlong, HU Haitao, CHEN Junyu, et al. Energy management and control strategy of regenerative braking energy utilization system in hub traction substation[J]. Transactions of China Electrotechnical Society, 2021, 36(3): 588-598.
    [10] 邓文丽,戴朝华,陈维荣. 光伏接入牵引供电系统的多元制约因素初探[J]. 太阳能学报,2020,41(8): 192-203.

    DENG Wenli, DAI Chaohua, CHEN Weirong. Preliminary research of multiple constriction for pv access traction power supply system[J]. Acta Energiae Solaris Sinica, 2020, 41(8): 192-203.
    [11] 邓文丽,戴朝华,陈维荣,等. 铁路功率调节器研究进展[J]. 中国电机工程学报,2020,40(14): 4640-4655,4742.

    DENG Wenli, DAI Chaohua, CHEN Weirong, et al. Research progress of railway power conditioner[J]. Proceedings of the CSEE, 2020, 40(14): 4640-4655,4742.
    [12] 黄小红,赵艺,李群湛,等. 电气化铁路同相储能供电技术[J]. 西南交通大学学报,2020,55(4): 856-864. doi: 10.3969/j.issn.0258-2724.20181083

    HUANG Xiaohong, ZHAO Yi, LI Qunzhan, et al. Co-phase traction power supply and energy storage technology for electrified railway[J]. Journal of Southwest Jiaotong University, 2020, 55(4): 856-864. doi: 10.3969/j.issn.0258-2724.20181083
    [13] 何晓琼,韩鹏程,王怡,等. 基于级联-并联变换器的贯通式牵引变电所系统研究[J]. 铁道学报,2017,39(8): 52-61. doi: 10.3969/j.issn.1001-8360.2017.08.008

    HE Xiaoqiong, HAN Pengcheng, WANG Yi, et al. Study on advanced cophase traction power substation system based on cascade-parallel converter[J]. Journal of the China Railway Society, 2017, 39(8): 52-61. doi: 10.3969/j.issn.1001-8360.2017.08.008
    [14] 魏文婧,胡海涛,王科,等. 基于铁路功率调节器的高速铁路牵引供电系统储能方案及控制策略[J]. 电工技术学报,2019,34(6): 1290-1299.

    WEI Wenjing, HU Haitao, WANG Ke, et al. Energy storage scheme and control strategies of high-speed railway based on railway power conditioner[J]. Transactions of China Electrotechnical Society, 2019, 34(6): 1290-1299.
    [15] 张秀峰,高仕斌,钱清泉,等. 基于阻抗匹配平衡变压器和AT供电方式的新型同相牵引供电系统[J]. 铁道学报,2006,28(4): 32-37. doi: 10.3321/j.issn:1001-8360.2006.04.007

    ZHANG Xiufeng, GAO Shibin, QIAN Qingquan, et al. A novel cophase traction power supply system based on impedance matching balance transformer and AT power supply mode[J]. Journal of the China Railway Society, 2006, 28(4): 32-37. doi: 10.3321/j.issn:1001-8360.2006.04.007
    [16] 陈民武,蒋汶兵,王旭光,等. 高速铁路新型同相贯通供电方案及其仿真研究[J]. 铁道学报,2016,38(1): 28-34. doi: 10.3969/j.issn.1001-8360.2016.01.005

    CHEN Minwu, JIANG Wenbing, WANG Xuguang, et al. Study on scheme and simulation of new co-phase continuous traction power supply system for high-speed railway[J]. Journal of the China Railway Society, 2016, 38(1): 28-34. doi: 10.3969/j.issn.1001-8360.2016.01.005
    [17] JIANG Y, LIU J Q, TIAN W, et al. Energy Harvesting for the Electrification of Railway Stations: getting a charge from the regenerative braking of trains[J]. IEEE Electrification Magazine, 2014, 2(3): 39-48.
    [18] 张丽艳,贾瑛,韩笃硕,等. 电气化铁路同相储能供电系统能量管理及容量配置策略[J]. 西南交通大学学报,2023,58(1): 22-29. doi: 10.3969/j.issn.0258-2724.20210247

    ZHANG Liyan, JIA Ying, HAN Dushuo, et al. Energy management and capacity allocation scheme for co-phase traction power supply and energy storage system in electrified railways[J]. Journal of Southwest Jiaotong University, 2023, 58(1): 22-29. doi: 10.3969/j.issn.0258-2724.20210247
    [19] 王辉,李群湛,解绍锋,等. 基于vv-SVG的电气化铁路同相供电综合补偿方案及控制策略[J]. 铁道学报,2021,43(9): 46-55. doi: 10.3969/j.issn.1001-8360.2021.09.007

    WANG Hui, LI Qunzhan, XIE Shaofeng, et al. Comprehensive compensation scheme and control strategy of cophase power supply for electrified railway based on vv-SVG[J]. Journal of the China Railway Society, 2021, 43(9): 46-55. doi: 10.3969/j.issn.1001-8360.2021.09.007
    [20] DAI N Y, WONG M C, LAO K W, et al. Modelling and control of a railway power conditioner in co-phase traction power system under partial compensation[J]. IET Power Electronics, 2014, 7(5): 1044-1054.
    [21] SHU Z L, XIE S F, LU K, et al. Digital detection, control, and distribution system for co-phase traction power supply application[J]. IEEE Transactions on Industrial Electronics, 2013, 60(5): 1831-1839.
    [22] 李群湛,王辉,黄文勋,等. 电气化铁路牵引变电所群贯通供电系统及其关键技术[J]. 电工技术学报,2021,36(5): 1064-1074.

    LI Qunzhan, WANG Hui, HUANG Wenxun, et al. Interconnected power supply system of traction substation group and its key technologies for the electrified railway[J]. Transactions of China Electrotechnical Society, 2021, 36(5): 1064-1074.
    [23] 夏焰坤,李群湛,解绍锋,等. 电气化铁道贯通同相供电变电所控制策略研究[J]. 铁道学报,2014,36(8): 25-31. doi: 10.3969/j.issn.1001-8360.2014.08.005

    XIA Yankun, LI Qunzhan, XIE Shaofeng, et al. Study on control strategy of continuous co-phase power supply substions of electrical railways[J]. Journal of the China Railway Society, 2014, 36(8): 25-31. doi: 10.3969/j.issn.1001-8360.2014.08.005
    [24] 王鑫,涂春鸣,郭祺,等. 电气化铁路贯通型供电系统综述[J]. 机车电传动,2022(3): 17-28.

    WANG Xin, TU Chunming, GUO Qi, et al. Review of through-type power supply system for electrified railways[J]. Electric Drive for Locomotives, 2022(3): 17-28.
    [25] GAZAFRUDI S M M, LANGERUDY A T, FUCHS E F, et al. Power quality issues in railway electrification: a comprehensive perspective[J]. IEEE Transactions on Industrial Electronics, 2015, 62(5): 3081-3090.
    [26] 孟令辉,周犹松,闫晗,等. 应用于贯通供电系统的两相–单相变换器直流电压纹波特性与功率均衡控制[J]. 中国电机工程学报,2022,42(17): 6449-6460.

    MENG Linghui, ZHOU Yousong, YAN Han, et al. DC-link voltage ripple analysis and power balanced control for two-phase to single-phase converter in advanced traction power supply system[J]. Proceedings of the CSEE, 2022, 42(17): 6449-6460.
    [27] 周志成. 基于树形双边供电的重载铁路贯通同相供电方案[J]. 铁道科学与工程学报,2020,17(3): 722-731.

    ZHOU Zhicheng. Cophase connected power supply scheme of heavy haul railway based on tree bilateral power supply[J]. Journal of Railway Science and Engineering, 2020, 17(3): 722-731.
    [28] 马建军,李平,马小宁,等. 铁路一体化信息集成平台总体架构及关键技术研究[J]. 中国铁道科学,2020,41(5): 153-161.

    MA Jianjun, LI Ping, MA Xiaoning, et al. Research on the overall framework and key technologies of railway integrated information platform[J]. China Railway Science, 2020, 41(5): 153-161.
    [29] 胡金磊,朱泽锋,林孝斌,等. 变电站无人机机巡边缘计算框架设计及资源调度方法[J]. 高电压技术,2021,47(2): 425-433.

    HU Jinlei, ZHU Zefeng, LIN Xiaobin, et al. Framework design and resource scheduling method for edge computing in substation UAV inspection[J]. High Voltage Engineering, 2021, 47(2): 425-433.
    [30] 白昱阳,黄彦浩,陈思远,等. 云边智能:电力系统运行控制的边缘计算方法及其应用现状与展望[J]. 自动化学报,2020,46(3): 397-410.

    BAI Yuyang, HUANG Yanhao, CHEN Siyuan, et al. Cloud-edge intelligence: status quo and future prospective of edge computing approaches and applications in power system operation and control[J]. Acta Automatica Sinica, 2020, 46(3): 397-410.
    [31] 邬明亮,郭爱,邓文丽,等. 铁路牵引用背靠背光伏发电系统及其消纳能力研究[J]. 太阳能学报,2019,40(12): 3444-3450.

    WU Mingliang, GUO Ai, DENG Wenli, et al. Research on back-to-back pv generation system for railway traction and its accommodation ability[J]. Acta Energiae Solaris Sinica, 2019, 40(12): 3444-3450.
    [32] 张磊,朱凌志,陈宁,等. 新能源发电模型统一化研究[J]. 电力系统自动化,2015,39(24): 129-138. doi: 10.7500/AEPS20150629010

    ZHANG Lei, ZHU Lingzhi, CHEN Ning, et al. Review on generic model for renewable energy generation[J]. Automation of Electric Power Systems, 2015, 39(24): 129-138. doi: 10.7500/AEPS20150629010
    [33] 邓文丽,戴朝华,陈维荣. 轨道交通能源互联网背景下光伏在交/直流牵引供电系统中的应用及关键问题分析[J]. 中国电机工程学报,2019,39(19): 5692-5702,5897.

    DENG Wenli, DAI Chaohua, CHEN Weirong. Application of PV generation in AC/DC traction power supply system and the key problem analysis under the background of rail transit energy Internet[J]. Proceedings of the CSEE, 2019, 39(19): 5692-5702,5897.
    [34] 诸斐琴,杨中平,林飞,等. 城轨交通牵引供电系统参数与储能系统容量配置综合优化[J]. 电工技术学报,2019,34(3): 579-588.

    ZHU Feiqin, YANG Zhongping, LIN Fei, et al. Synthetic optimization of traction power parameters and energy storage systems in urban rail transit[J]. Transactions of China Electrotechnical Society, 2019, 34(3): 579-588.
    [35] 邬明亮. 分时电价政策下电气化铁路储能的经济性[J]. 电力自动化设备,2020,40(6): 1-3,191-197.

    WU Mingliang. Economy of energy storage in electrified railway under time-of-use price policy[J]. Electric Power Automation Equipment, 2020, 40(6): 1-3,191-197.
    [36] 陈维荣,王璇,李奇,等. 光伏电站接入轨道交通牵引供电系统发展现状综述[J]. 电网技术,2019,43(10): 3663-3670.

    CHEN Weirong, WANG Xuan, LI Qi, et al. Review on the development status of PV power station accessing to traction power supply system for rail transit[J]. Power System Technology, 2019, 43(10): 3663-3670.
    [37] CUI G P, LUO L F, LIANG C G, et al. Supercapacitor integrated railway static power conditioner for regenerative braking energy recycling and power quality improvement of high-speed railway system[J]. IEEE Transactions on Transportation Electrification, 2019, 5(3): 702-714.
    [38] 魏波,胡海涛,王科,等. 基于实测数据和行车运行图的高铁牵引变电站负荷预测方法[J]. 电工技术学报,2020,35(1): 179-188.

    WEI Bo, HU Haitao, WANG Ke, et al. Research on traction load forecasting method for high-speed railway traction substation based on measured data and train timetable[J]. Transactions of China Electrotechnical Society, 2020, 35(1): 179-188.
    [39] WU C X, LU S F, XUE F, et al. A two-step method for energy-efficient train operation, timetabling, and onboard energy storage device management[J]. IEEE Transactions on Transportation Electrification, 2021, 7(3): 1822-1833.
    [40] 罗嘉明,韦晓广,高仕斌,等. 高速铁路储能系统容量配置与能量管理技术综述与展望[J]. 中国电机工程学报,2022,42(19): 7028-7051.

    LUO Jiaming, WEI Xiaoguang, GAO Shibin, et al. Summary and outlook of capacity configuration and energy management technology of high-speed railway energy storage system[J]. Proceedings of the CSEE, 2022, 42(19): 7028-7051.
    [41] DÍAZ-GONZÁLEZ F, SUMPER A, GOMIS-BELLMUNT O, et al. A review of energy storage technologies for wind power applications[J]. Renewable and Sustainable Energy Reviews, 2012, 16(4): 2154-2171.
    [42] 袁佳歆,曲锴,郑先锋,等. 高速铁路混合储能系统容量优化研究[J]. 电工技术学报,2021,36(19): 4161-4169,4182.

    YUAN Jiaxin, QU Kai, ZHENG Xianfeng, et al. Optimizing research on hybrid energy storage system of high speed railway[J]. Transactions of China Electrotechnical Society, 2021, 36(19): 4161-4169,4182.
    [43] 薛禹胜,雷兴,薛峰,等. 关于电力系统广域保护的评述[J]. 高电压技术,2012,38(3): 513-520.

    XUE Yusheng, LEI Xing, XUE Feng, et al. Review on wide area protection of electric power systems[J]. High Voltage Engineering, 2012, 38(3): 513-520.
    [44] 井友刚. 电气化铁路广域保护系统自愈重构功能研究与应用[J]. 电气化铁道,2020,31(3): 12-15,32.

    JING Yougang. Study on and application of self-healing reconfiguration function of wide area protection system for electrified railway[J]. Electric Railway, 2020, 31(3): 12-15,32.
    [45] 刘育权,华煌圣,李力,等. 多层次的广域保护控制体系架构研究与实践[J]. 电力系统保护与控制,2015,43(5): 112-122. doi: 10.7667/j.issn.1674-3415.2015.05.018

    LIU Yuquan, HUA Huangsheng, LI Li, et al. Research and application of multi-level wide-area protection system[J]. Power System Protection and Control, 2015, 43(5): 112-122. doi: 10.7667/j.issn.1674-3415.2015.05.018
    [46] 王潘潘. 京张高铁智能牵引供电系统自愈重构方案研究[J]. 电气化铁道,2020,31(增2): 126-131.

    WANG Panpan. Research on self-healing reconstruction scheme of intelligent traction power supply system for Beijing—Zhangjiakou high-speed railway[J]. Electric Railway, 2020, 31(S2): 126-131.
    [47] 尹项根,李振兴,刘颖彤,等. 广域继电保护及其故障元件判别问题的探讨[J]. 电力系统保护与控制,2012,40(5): 1-9. doi: 10.3969/j.issn.1674-3415.2012.05.001

    YIN Xianggen, LI Zhenxing, LIU Yingtong, et al. Study on wide area relaying protection and fault element identification[J]. Power System Protection and Control, 2012, 40(5): 1-9. doi: 10.3969/j.issn.1674-3415.2012.05.001
    [48] 李振坤,赵向阳,朱兰,等. 智能配电网故障后自愈能力评估[J]. 电网技术,2018,42(3): 789-796.

    LI Zhenkun, ZHAO Xiangyang, ZHU Lan, et al. Evaluation of self-healing ability for smart distribution network after failure[J]. Power System Technology, 2018, 42(3): 789-796.
    [49] 张小瑜,吴俊勇. 高速铁路牵引供电系统的供电可靠性评估方法[J]. 电网技术,2007,31(11): 27-32. doi: 10.3321/j.issn:1000-3673.2007.11.006

    ZHANG Xiaoyu, WU Junyong. Reliability estimation method of traction power supply system for high-speed railway[J]. Power System Technology, 2007, 31(11): 27-32. doi: 10.3321/j.issn:1000-3673.2007.11.006
    [50] 周桂法,邵志和,曾嵘. 轨道交通RAMS工作的理解与实施[J]. 机车电传动,2014(2): 1-5,15.

    ZHOU Guifa, SHAO Zhihe, ZENG Rong. Comprehension and implementation of RAMS for rail transit[J]. Electric Drive for Locomotives, 2014(2): 1-5,15.
    [51] YANG X W, HU H T, GE Y B, et al. An improved droop control strategy for VSC-based MVDC traction power supply system[J]. IEEE Transactions on Industry Applications, 2018, 54(5): 5173-5186.
    [52] GOMEZ-EXPOSITO A, MAURICIO J M, MAZA-ORTEGA J M. VSC-based MVDC railway electrification system[J]. IEEE Transactions on Power Delivery, 2014, 29(1): 422-431.
    [53] 程红,高巧梅,朱锦标,等. 基于双重移相控制的双向全桥DC-DC变换器动态建模与最小回流功率控制[J]. 电工技术学报,2014,29(3): 245-253. doi: 10.3969/j.issn.1000-6753.2014.03.031

    CHENG Hong, GAO Qiaomei, ZHU Jinbiao, et al. Dynamic modeling and minimum backflow power controlling of the bi-directional full-bridge DC-DC converters based on dual-phase-shifting control[J]. Transactions of China Electrotechnical Society, 2014, 29(3): 245-253. doi: 10.3969/j.issn.1000-6753.2014.03.031
    [54] 何晓琼,彭俊,韩鹏程,等. 电气化铁路综合补偿器控制策略研究[J]. 铁道学报,2020,42(9): 74-84. doi: 10.3969/j.issn.1001-8360.2020.09.010

    HE Xiaoqiong, PENG Jun, HAN Pengcheng, et al. Study on control strategy of comprehensive compensator for electrified railway[J]. Journal of the China Railway Society, 2020, 42(9): 74-84. doi: 10.3969/j.issn.1001-8360.2020.09.010
    [55] 鲍冠南,陆超,袁志昌,等. 基于动态规划的电池储能系统削峰填谷实时优化[J]. 电力系统自动化,2012,36(12): 11-16.

    BAO Guannan, LU Chao, YUAN Zhichang, et al. Load shift real-time optimization strategy of battery energy storage system based on dynamic programming[J]. Automation of Electric Power Systems, 2012, 36(12): 11-16.
    [56] 邓文丽,戴朝华,张涵博,等. 复杂电气化铁路牵引用光伏发电系统综合优化控制方法研究[J]. 中国电机工程学报,2020,40(18): 5849-5865.

    DENG Wenli, DAI Chaohua, ZHANG Hanbo, et al. Research on comprehensive optimization control method for traction photovoltaic generation system of complex electrified railway[J]. Proceedings of the CSEE, 2020, 40(18): 5849-5865.
    [57] 申建建,曹瑞,苏承国,等. 水火风光多源发电调度系统大数据平台架构及关键技术[J]. 中国电机工程学报,2019,39(1): 43-55,319.

    SHEN Jianjian, CAO Rui, SU Chengguo, et al. Big data platform architecture and key techniques of power generation scheduling for hydro-thermal-wind-solar hybrid system[J]. Proceedings of the CSEE, 2019, 39(1): 43-55,319.
    [58] 胡威,张新燕,郭永辉,等. 基于游程检测法重构CEEMD的短时风功率预测[J]. 太阳能学报,2020,41(11): 317-325.

    HU Wei, ZHANG Xinyan, GUO Yonghui, et al. Short-time wind power prediction of ceemd reconstructed based on run-length detection method[J]. Acta Energiae Solaris Sinica, 2020, 41(11): 317-325.
    [59] HUANG J, THATCHER M. Assessing the value of simulated regional weather variability in solar forecasting using numerical weather prediction[J]. Solar Energy, 2017, 144: 529-539.
    [60] 肖雅君,吴汶麒. 用于轨道交通列车自动控制系统的通信技术[J]. 城市轨道交通研究,2002,5(2): 59-64,72. doi: 10.3969/j.issn.1007-869X.2002.02.013

    XIAO Yajun, WU Wenqi. Communication technology applied in ATC system of UMT[J]. Urban Mass Transit, 2002, 5(2): 59-64,72. doi: 10.3969/j.issn.1007-869X.2002.02.013
    [61] 王凯,刘留,于蒙,等. 超高速列车车地无线通信系统性能分析[J]. 北京交通大学学报,2021,45(4): 117-126. doi: 10.11860/j.issn.1673-0291.20210074

    WANG Kai, LIU Liu, YU Meng, et al. System performance analysis on train-ground wireless communication for the ultra high-speed train[J]. Journal of Beijing Jiaotong University, 2021, 45(4): 117-126. doi: 10.11860/j.issn.1673-0291.20210074
    [62] 王磊,何正友. 高速列车通信网络技术特点及其应用[J]. 城市轨道交通研究,2008,11(2): 57-61,64. doi: 10.3969/j.issn.1007-869X.2008.02.016

    WANG Lei, HE Zhengyou. Technological characteristics of high-speed train communication network and its application[J]. Urban Mass Transit, 2008, 11(2): 57-61,64. doi: 10.3969/j.issn.1007-869X.2008.02.016
    [63] 上官伟,王韦舒,张路,等. 北斗导航RAIM技术在列车定位的应用研究[J]. 铁道学报,2018,40(2): 73-81. doi: 10.3969/j.issn.1001-8360.2018.02.011

    SHANGGUAN Wei, WANG Weishu, ZHANG Lu, et al. Application of BDS-based RAIM technology in train positioning[J]. Journal of the China Railway Society, 2018, 40(2): 73-81. doi: 10.3969/j.issn.1001-8360.2018.02.011
    [64] 肖白,邢世亨,王茂春,等. 基于改进KDE法和GA-SVM的多风电场聚合后输出功率长期波动特性预测方法[J]. 电力自动化设备,2022,42(2): 77-84.

    XIAO Bai, XING Shiheng, WANG Maochun, et al. Prediction method of output power long-term fluctuation characteristic for multiple wind farms after aggregation based on improved KDE method and GA-SVM[J]. Electric Power Automation Equipment, 2022, 42(2): 77-84.
    [65] 易善军,王汉军,向勇,等. 基于集成多尺度LSTM的短时风功率预测[J]. 重庆大学学报,2021,44(7): 75-81. doi: 10.11835/j.issn.1000-582X.2021.07.008

    YI Shanjun, WANG Hanjun, XIANG Yong, et al. Short-term wind power forecasting based on integrated multi-scale LSTM[J]. Journal of Chongqing University, 2021, 44(7): 75-81. doi: 10.11835/j.issn.1000-582X.2021.07.008
    [66] BREKKEN T K A, YOKOCHI A, VON JOUANNE A, et al. Optimal energy storage sizing and control for wind power applications[J]. IEEE Transactions on Sustainable Energy, 2010, 2(1): 69-77.
    [67] 琚垚,祁林,刘帅. 基于改进乌鸦算法和ESN神经网络的短期风电功率预测[J]. 电力系统保护与控制,2019,47(4): 58-64. doi: 10.7667/PSPC180251

    JU Yao, QI Lin, LIU Shuai. Short-term wind power forecasting based on improved crow search algorithm and ESN neural network[J]. Power System Protection and Control, 2019, 47(4): 58-64. doi: 10.7667/PSPC180251
    [68] 徐诗鸿,张宏志,林湘宁,等. 近海海岛多态能源供需自洽系统日前优化调度策略[J]. 中国电机工程学报,2019,39(增1): 15-29.

    XU Shihong, ZHANG Hongzhi, LIN Xiangning, et al. Optimal dispatching strategy of self-consistent supply and demand system of polymorphic energy in offshore islands recently[J]. Proceedings of the CSEE, 2019, 39(S1): 15-29.
    [69] 张丽艳,李群湛,朱毅. 新建电气化铁路牵引负荷预测[J]. 西南交通大学学报,2016,51(4): 743-749. doi: 10.3969/j.issn.0258-2724.2016.04.020

    ZHANG Liyan, LI Qunzhan, ZHU Yi. Prediction of traction load for new electrified railway[J]. Journal of Southwest Jiaotong University, 2016, 51(4): 743-749. doi: 10.3969/j.issn.0258-2724.2016.04.020
    [70] 杨丘帆,黄煜彬,石梦璇,等. 基于一致性算法的直流微电网多组光储单元分布式控制方法[J]. 中国电机工程学报,2020,40(12): 3919-3928.

    YANG Qiufan, HUANG Yubin, SHI Mengxuan, et al. Consensus based distributed control for multiple PV-battery storage units in DC microgrid[J]. Proceedings of the CSEE, 2020, 40(12): 3919-3928.
    [71] 金波,孙鹏飞,王青元,等. 基于混合整数规划的高速列车多区间节能优化研究[J]. 铁道学报,2020,42(2): 11-17.

    JIN Bo, SUN Pengfei, WANG Qingyuan, et al. Energy-saving optimization of multi-interstation high-speed train with mixed integer linear programming[J]. Journal of the China Railway Society, 2020, 42(2): 11-17.
    [72] 荀径,杨欣,宁滨,等. 列车节能操纵优化求解方法综述[J]. 铁道学报,2014,36(4): 14-20. doi: 10.3969/j.issn.1001-8360.2014.04.003

    XUN Jing, YANG Xin, NING Bin, et al. Survey on trajectory optimization for train operation[J]. Journal of the China Railway Society, 2014, 36(4): 14-20. doi: 10.3969/j.issn.1001-8360.2014.04.003
    [73] 冷勇林,陈德旺,阴佳腾. 基于专家系统及在线调整的列车智能驾驶算法[J]. 铁道学报,2014,36(2): 62-68. doi: 10.3969/j.issn.1001-8360.2014.02.010

    LENG Yonglin, CHEN Dewang, YIN Jiateng. An intelligent train operation (ITO) algorithm based on expert system and online adjustment[J]. Journal of the China Railway Society, 2014, 36(2): 62-68. doi: 10.3969/j.issn.1001-8360.2014.02.010
    [74] LU S F, WESTON P, HILLMANSEN S, et al. Increasing the regenerative braking energy for railway vehicles[J]. IEEE Transactions on Intelligent Transportation Systems, 2014, 15(6): 2506-2515.
    [75] 刘宏杰. 结合能量存储的城轨列车调度控制一体化节能优化方法研究[D]. 北京: 北京交通大学,2019.
    [76] 郑亚晶,李耀辉,李雨恒,等. 再生制动条件下地铁列车运行图的节能优化[J]. 华南理工大学学报(自然科学版),2021,49(7): 1-7. doi: 10.12141/j.issn.1000-565X.200552

    ZHENG Yajing, LI Yaohui, LI Yuheng, et al. Energy saving optimization of metro train working diagram under regenerative braking[J]. Journal of South China University of Technology (Natural Science Edition), 2021, 49(7): 1-7. doi: 10.12141/j.issn.1000-565X.200552
    [77] 沈迪,王青元,夏菲,等. 高速列车应急自走行辅助驾驶研究[J]. 机车电传动,2021(1): 91-97.

    SHEN Di, WANG Qingyuan, XIA Fei, et al. Research on urgent operation assistant driving for high-speed train[J]. Electric Drive for Locomotives, 2021(1): 91-97.
    [78] 王青元,冯晓云,朱金陵,等. 考虑再生制动能量利用的高速列车节能最优控制仿真研究[J]. 中国铁道科学,2015,36(1): 96-103. doi: 10.3969/j.issn.1001-4632.2015.01.14

    WANG Qingyuan, FENG Xiaoyun, ZHU Jinling, et al. Simulation study on optimal energy-efficient control of high speed train considering regenerative brake energy[J]. China Railway Science, 2015, 36(1): 96-103. doi: 10.3969/j.issn.1001-4632.2015.01.14
  • 期刊类型引用(2)

    1. 钟吴君,李培强,涂春鸣. 基于EEMD-CBAM-Bi LSTM的牵引负荷超短期预测. 电工技术学报. 2024(21): 6850-6864 . 百度学术
    2. 吴磊,舒洋浩,周斌彬,张凌云,戴朝华. 基于配置与能量管理协同的铁路光储系统经济性提升策略. 铁道科学与工程学报. 2024(11): 4711-4723 . 百度学术

    其他类型引用(3)

  • 加载中
图(13)
计量
  • 文章访问数:  498
  • HTML全文浏览量:  390
  • PDF下载量:  161
  • 被引次数: 5
出版历程
  • 收稿日期:  2022-03-24
  • 修回日期:  2022-09-27
  • 网络出版日期:  2024-08-24
  • 刊出日期:  2022-12-01

目录

/

返回文章
返回