• ISSN 0258-2724
  • CN 51-1277/U
  • EI Compendex
  • Scopus 收录
  • 全国中文核心期刊
  • 中国科技论文统计源期刊
  • 中国科学引文数据库来源期刊

轨道交通“网-源-储-车”协同供能技术体系

高仕斌 罗嘉明 陈维荣 胡海涛 涂春鸣 陈艳波 肖凡 王飞宽

高仕斌, 罗嘉明, 陈维荣, 胡海涛, 涂春鸣, 陈艳波, 肖凡, 王飞宽. 轨道交通“网-源-储-车”协同供能技术体系[J]. 西南交通大学学报, 2024, 59(5): 959-979, 989. doi: 10.3969/j.issn.0258-2724.20220210
引用本文: 高仕斌, 罗嘉明, 陈维荣, 胡海涛, 涂春鸣, 陈艳波, 肖凡, 王飞宽. 轨道交通“网-源-储-车”协同供能技术体系[J]. 西南交通大学学报, 2024, 59(5): 959-979, 989. doi: 10.3969/j.issn.0258-2724.20220210
GAO Shibin, LUO Jiaming, CHEN Weirong, HU Haitao, TU Chunming, CHEN Yanbo, XIAO Fan, WANG Feikuan. Rail Transit “Network-Source-Storage-Vehicle” Collaborative Energy Supply Technology System[J]. Journal of Southwest Jiaotong University, 2024, 59(5): 959-979, 989. doi: 10.3969/j.issn.0258-2724.20220210
Citation: GAO Shibin, LUO Jiaming, CHEN Weirong, HU Haitao, TU Chunming, CHEN Yanbo, XIAO Fan, WANG Feikuan. Rail Transit “Network-Source-Storage-Vehicle” Collaborative Energy Supply Technology System[J]. Journal of Southwest Jiaotong University, 2024, 59(5): 959-979, 989. doi: 10.3969/j.issn.0258-2724.20220210

轨道交通“网-源-储-车”协同供能技术体系

doi: 10.3969/j.issn.0258-2724.20220210
基金项目: 国家重点研发计划(2021YFB2601500)
详细信息
    作者简介:

    高仕斌(1964—),男,教授,博士,研究方向为变电站综合自动化与继电保护,E-mail:gao_shi_bin@126.com

  • 中图分类号: U223.1

Rail Transit “Network-Source-Storage-Vehicle” Collaborative Energy Supply Technology System

  • 摘要:

    为降低轨道交通系统牵引能耗,轨道交通“网-源-储-车”协同供能技术通过可再生能源的就地消纳,构建新型协同供能技术体系,实现跨时空高效用能. 针对此新型供电系统结构,本文全面分析协同供能系统的物理架构、信息架构和社会架构的基本组成及类型特征;在此基础上,围绕资产能源化的基本概念,总结“荷-源”时空匹配评估方法与优化技术,并从系统角度阐述多源融合技术、保护重构、弹性评估等重要技术体系;重点分析“网-源-储-车”协同的高效能与高弹性的能源自洽技术,并基于人工智能和信息技术构建多层级能量管控系统,实现不同能量流的高效耦合,保障系统安全稳定经济运行. 本文系统性地总结了轨道交通“网-源-储-车”协同供能系统的架构特征、评估优化、安全运维及协同运行等关键技术,阐述协同供能系统的技术组成体系,为协同供能系统的工程实践提供相应参考.

     

  • 图 1  轨道交通“网-源-储-车”协同供能系统结构

    Figure 1.  “Network-source-storage-vehicle”collaborative energy supply system structure of rail transit

    图 2  基于功率融通设备的互联架构

    Figure 2.  Interconnection architecture based on power fusion equipment

    图 3  基于组合式同相供电的互联架构

    Figure 3.  Interconnection architecture based on combined in-phase power supply

    图 4  基于贯通供电的互联架构

    Figure 4.  Interconnection architecture of continuous power supply

    图 5  基于高压直流贯通线的互联架构

    Figure 5.  Interconnection architecture based on HVDC through lines

    图 6  基于物联网的云边协同信息处理技术架构

    Figure 6.  Cloud-side collaborative information processing technology architecture based on the internet of things

    图 7  牵引供电系统产消者运行模式

    Figure 7.  Operation mode of producer and consumer of traction power supply system

    图 8  源-荷时空匹配度评估及优化方法

    Figure 8.  Source-load space-time matching degree evaluation method

    图 9  “源-储”双层协同优化结构

    Figure 9.  “Source-storage” double-layer collaborative optimization structure

    图 10  广域保护结构

    Figure 10.  Basic structure of wide area protection

    图 11  “网-源-车-储”协同能量管理系统

    Figure 11.  “network-source-vehicle-storage” collaborative energy management system

    图 12  北斗时空量测系统

    Figure 12.  Beidou space-time measurement system

    图 13  多目标在线驾驶优化示意

    Figure 13.  Schematic diagram of multi-objective online driving optimization

  • [1] 中国国家铁路集团有限公司. 中国国家铁路集团有限公司2023年统计公报[Z]. 北京: 中国国家铁路集团有限公司,2024.
    [2] 胡海涛,郑政,何正友,等. 交通能源互联网体系架构及关键技术[J]. 中国电机工程学报,2018,38(1): 12-24,339.

    HU Haitao, ZHENG Zheng, HE Zhengyou, et al. The framework and key technologies of traffic energy Internet[J]. Proceedings of the CSEE, 2018, 38(1): 12-24,339.
    [3] 何正友,向悦萍,廖凯,等. 能源-交通-信息三网融合发展的需求、形态及关键技术[J]. 电力系统自动化,2021,45(16): 73-86.

    HE Zhengyou, XIANG Yueping, LIAO Kai, et al. Demand, form and key technologies of integrated development of energy-transport-information networks[J]. Automation of Electric Power Systems, 2021, 45(16): 73-86.
    [4] 高仕斌,高凤华,刘一谷,等. 自感知能源互联网研究展望[J]. 电力系统自动化,2021,45(5): 1-17.

    GAO Shibin, GAO Fenghua, LIU Yigu, et al. Prospect of research on self-aware energy internet[J]. Automation of Electric Power Systems, 2021, 45(5): 1-17.
    [5] 孙秋野,滕菲,张化光. 能源互联网及其关键控制问题[J]. 自动化学报,2017,43(2): 176-194.

    SUN Qiuye, TENG Fei, ZHANG Huaguang. Energy internet and its key control issues[J]. Acta Automatica Sinica, 2017, 43(2): 176-194.
    [6] 韦晓广,高仕斌,臧天磊,等. 社会能源互联网:概念、架构和展望[J]. 中国电机工程学报,2018,38(17): 4969-4986,5295.

    WEI Xiaoguang, GAO Shibin, ZANG Tianlei, et al. Social energy internet: concept, architecture and outlook[J]. Proceedings of the CSEE, 2018, 38(17): 4969-4986,5295.
    [7] 韦晓广,高仕斌,李多,等. 基于连锁故障网络图和不同攻击方式的输电线路脆弱性分析[J]. 中国电机工程学报,2018,38(2): 465-474,677.

    WEI Xiaoguang, GAO Shibin, LI Duo, et al. Cascading fault graph for the analysis of transmission network vulnerability under different attacks[J]. Proceedings of the CSEE, 2018, 38(2): 465-474,677.
    [8] 胡海涛,葛银波,黄毅,等. 电气化铁路“源–网–车–储”一体化供电技术[J]. 中国电机工程学报,2022,42(12): 4374-4391.

    HU Haitao, GE Yinbo, HUANG Yi, et al. “source-network-train-storage” integrated power supply system for electric railways[J]. Proceedings of the CSEE, 2022, 42(12): 4374-4391.
    [9] 黄文龙,胡海涛,陈俊宇,等. 枢纽型牵引变电所再生制动能量利用系统能量管理及控制策略[J]. 电工技术学报,2021,36(3): 588-598.

    HUANG Wenlong, HU Haitao, CHEN Junyu, et al. Energy management and control strategy of regenerative braking energy utilization system in hub traction substation[J]. Transactions of China Electrotechnical Society, 2021, 36(3): 588-598.
    [10] 邓文丽,戴朝华,陈维荣. 光伏接入牵引供电系统的多元制约因素初探[J]. 太阳能学报,2020,41(8): 192-203.

    DENG Wenli, DAI Chaohua, CHEN Weirong. Preliminary research of multiple constriction for pv access traction power supply system[J]. Acta Energiae Solaris Sinica, 2020, 41(8): 192-203.
    [11] 邓文丽,戴朝华,陈维荣,等. 铁路功率调节器研究进展[J]. 中国电机工程学报,2020,40(14): 4640-4655,4742.

    DENG Wenli, DAI Chaohua, CHEN Weirong, et al. Research progress of railway power conditioner[J]. Proceedings of the CSEE, 2020, 40(14): 4640-4655,4742.
    [12] 黄小红,赵艺,李群湛,等. 电气化铁路同相储能供电技术[J]. 西南交通大学学报,2020,55(4): 856-864. doi: 10.3969/j.issn.0258-2724.20181083

    HUANG Xiaohong, ZHAO Yi, LI Qunzhan, et al. Co-phase traction power supply and energy storage technology for electrified railway[J]. Journal of Southwest Jiaotong University, 2020, 55(4): 856-864. doi: 10.3969/j.issn.0258-2724.20181083
    [13] 何晓琼,韩鹏程,王怡,等. 基于级联-并联变换器的贯通式牵引变电所系统研究[J]. 铁道学报,2017,39(8): 52-61. doi: 10.3969/j.issn.1001-8360.2017.08.008

    HE Xiaoqiong, HAN Pengcheng, WANG Yi, et al. Study on advanced cophase traction power substation system based on cascade-parallel converter[J]. Journal of the China Railway Society, 2017, 39(8): 52-61. doi: 10.3969/j.issn.1001-8360.2017.08.008
    [14] 魏文婧,胡海涛,王科,等. 基于铁路功率调节器的高速铁路牵引供电系统储能方案及控制策略[J]. 电工技术学报,2019,34(6): 1290-1299.

    WEI Wenjing, HU Haitao, WANG Ke, et al. Energy storage scheme and control strategies of high-speed railway based on railway power conditioner[J]. Transactions of China Electrotechnical Society, 2019, 34(6): 1290-1299.
    [15] 张秀峰,高仕斌,钱清泉,等. 基于阻抗匹配平衡变压器和AT供电方式的新型同相牵引供电系统[J]. 铁道学报,2006,28(4): 32-37. doi: 10.3321/j.issn:1001-8360.2006.04.007

    ZHANG Xiufeng, GAO Shibin, QIAN Qingquan, et al. A novel cophase traction power supply system based on impedance matching balance transformer and AT power supply mode[J]. Journal of the China Railway Society, 2006, 28(4): 32-37. doi: 10.3321/j.issn:1001-8360.2006.04.007
    [16] 陈民武,蒋汶兵,王旭光,等. 高速铁路新型同相贯通供电方案及其仿真研究[J]. 铁道学报,2016,38(1): 28-34. doi: 10.3969/j.issn.1001-8360.2016.01.005

    CHEN Minwu, JIANG Wenbing, WANG Xuguang, et al. Study on scheme and simulation of new co-phase continuous traction power supply system for high-speed railway[J]. Journal of the China Railway Society, 2016, 38(1): 28-34. doi: 10.3969/j.issn.1001-8360.2016.01.005
    [17] JIANG Y, LIU J Q, TIAN W, et al. Energy Harvesting for the Electrification of Railway Stations: getting a charge from the regenerative braking of trains[J]. IEEE Electrification Magazine, 2014, 2(3): 39-48.
    [18] 张丽艳,贾瑛,韩笃硕,等. 电气化铁路同相储能供电系统能量管理及容量配置策略[J]. 西南交通大学学报,2023,58(1): 22-29. doi: 10.3969/j.issn.0258-2724.20210247

    ZHANG Liyan, JIA Ying, HAN Dushuo, et al. Energy management and capacity allocation scheme for co-phase traction power supply and energy storage system in electrified railways[J]. Journal of Southwest Jiaotong University, 2023, 58(1): 22-29. doi: 10.3969/j.issn.0258-2724.20210247
    [19] 王辉,李群湛,解绍锋,等. 基于vv-SVG的电气化铁路同相供电综合补偿方案及控制策略[J]. 铁道学报,2021,43(9): 46-55. doi: 10.3969/j.issn.1001-8360.2021.09.007

    WANG Hui, LI Qunzhan, XIE Shaofeng, et al. Comprehensive compensation scheme and control strategy of cophase power supply for electrified railway based on vv-SVG[J]. Journal of the China Railway Society, 2021, 43(9): 46-55. doi: 10.3969/j.issn.1001-8360.2021.09.007
    [20] DAI N Y, WONG M C, LAO K W, et al. Modelling and control of a railway power conditioner in co-phase traction power system under partial compensation[J]. IET Power Electronics, 2014, 7(5): 1044-1054.
    [21] SHU Z L, XIE S F, LU K, et al. Digital detection, control, and distribution system for co-phase traction power supply application[J]. IEEE Transactions on Industrial Electronics, 2013, 60(5): 1831-1839.
    [22] 李群湛,王辉,黄文勋,等. 电气化铁路牵引变电所群贯通供电系统及其关键技术[J]. 电工技术学报,2021,36(5): 1064-1074.

    LI Qunzhan, WANG Hui, HUANG Wenxun, et al. Interconnected power supply system of traction substation group and its key technologies for the electrified railway[J]. Transactions of China Electrotechnical Society, 2021, 36(5): 1064-1074.
    [23] 夏焰坤,李群湛,解绍锋,等. 电气化铁道贯通同相供电变电所控制策略研究[J]. 铁道学报,2014,36(8): 25-31. doi: 10.3969/j.issn.1001-8360.2014.08.005

    XIA Yankun, LI Qunzhan, XIE Shaofeng, et al. Study on control strategy of continuous co-phase power supply substions of electrical railways[J]. Journal of the China Railway Society, 2014, 36(8): 25-31. doi: 10.3969/j.issn.1001-8360.2014.08.005
    [24] 王鑫,涂春鸣,郭祺,等. 电气化铁路贯通型供电系统综述[J]. 机车电传动,2022(3): 17-28.

    WANG Xin, TU Chunming, GUO Qi, et al. Review of through-type power supply system for electrified railways[J]. Electric Drive for Locomotives, 2022(3): 17-28.
    [25] GAZAFRUDI S M M, LANGERUDY A T, FUCHS E F, et al. Power quality issues in railway electrification: a comprehensive perspective[J]. IEEE Transactions on Industrial Electronics, 2015, 62(5): 3081-3090.
    [26] 孟令辉,周犹松,闫晗,等. 应用于贯通供电系统的两相–单相变换器直流电压纹波特性与功率均衡控制[J]. 中国电机工程学报,2022,42(17): 6449-6460.

    MENG Linghui, ZHOU Yousong, YAN Han, et al. DC-link voltage ripple analysis and power balanced control for two-phase to single-phase converter in advanced traction power supply system[J]. Proceedings of the CSEE, 2022, 42(17): 6449-6460.
    [27] 周志成. 基于树形双边供电的重载铁路贯通同相供电方案[J]. 铁道科学与工程学报,2020,17(3): 722-731.

    ZHOU Zhicheng. Cophase connected power supply scheme of heavy haul railway based on tree bilateral power supply[J]. Journal of Railway Science and Engineering, 2020, 17(3): 722-731.
    [28] 马建军,李平,马小宁,等. 铁路一体化信息集成平台总体架构及关键技术研究[J]. 中国铁道科学,2020,41(5): 153-161.

    MA Jianjun, LI Ping, MA Xiaoning, et al. Research on the overall framework and key technologies of railway integrated information platform[J]. China Railway Science, 2020, 41(5): 153-161.
    [29] 胡金磊,朱泽锋,林孝斌,等. 变电站无人机机巡边缘计算框架设计及资源调度方法[J]. 高电压技术,2021,47(2): 425-433.

    HU Jinlei, ZHU Zefeng, LIN Xiaobin, et al. Framework design and resource scheduling method for edge computing in substation UAV inspection[J]. High Voltage Engineering, 2021, 47(2): 425-433.
    [30] 白昱阳,黄彦浩,陈思远,等. 云边智能:电力系统运行控制的边缘计算方法及其应用现状与展望[J]. 自动化学报,2020,46(3): 397-410.

    BAI Yuyang, HUANG Yanhao, CHEN Siyuan, et al. Cloud-edge intelligence: status quo and future prospective of edge computing approaches and applications in power system operation and control[J]. Acta Automatica Sinica, 2020, 46(3): 397-410.
    [31] 邬明亮,郭爱,邓文丽,等. 铁路牵引用背靠背光伏发电系统及其消纳能力研究[J]. 太阳能学报,2019,40(12): 3444-3450.

    WU Mingliang, GUO Ai, DENG Wenli, et al. Research on back-to-back pv generation system for railway traction and its accommodation ability[J]. Acta Energiae Solaris Sinica, 2019, 40(12): 3444-3450.
    [32] 张磊,朱凌志,陈宁,等. 新能源发电模型统一化研究[J]. 电力系统自动化,2015,39(24): 129-138. doi: 10.7500/AEPS20150629010

    ZHANG Lei, ZHU Lingzhi, CHEN Ning, et al. Review on generic model for renewable energy generation[J]. Automation of Electric Power Systems, 2015, 39(24): 129-138. doi: 10.7500/AEPS20150629010
    [33] 邓文丽,戴朝华,陈维荣. 轨道交通能源互联网背景下光伏在交/直流牵引供电系统中的应用及关键问题分析[J]. 中国电机工程学报,2019,39(19): 5692-5702,5897.

    DENG Wenli, DAI Chaohua, CHEN Weirong. Application of PV generation in AC/DC traction power supply system and the key problem analysis under the background of rail transit energy Internet[J]. Proceedings of the CSEE, 2019, 39(19): 5692-5702,5897.
    [34] 诸斐琴,杨中平,林飞,等. 城轨交通牵引供电系统参数与储能系统容量配置综合优化[J]. 电工技术学报,2019,34(3): 579-588.

    ZHU Feiqin, YANG Zhongping, LIN Fei, et al. Synthetic optimization of traction power parameters and energy storage systems in urban rail transit[J]. Transactions of China Electrotechnical Society, 2019, 34(3): 579-588.
    [35] 邬明亮. 分时电价政策下电气化铁路储能的经济性[J]. 电力自动化设备,2020,40(6): 1-3,191-197.

    WU Mingliang. Economy of energy storage in electrified railway under time-of-use price policy[J]. Electric Power Automation Equipment, 2020, 40(6): 1-3,191-197.
    [36] 陈维荣,王璇,李奇,等. 光伏电站接入轨道交通牵引供电系统发展现状综述[J]. 电网技术,2019,43(10): 3663-3670.

    CHEN Weirong, WANG Xuan, LI Qi, et al. Review on the development status of PV power station accessing to traction power supply system for rail transit[J]. Power System Technology, 2019, 43(10): 3663-3670.
    [37] CUI G P, LUO L F, LIANG C G, et al. Supercapacitor integrated railway static power conditioner for regenerative braking energy recycling and power quality improvement of high-speed railway system[J]. IEEE Transactions on Transportation Electrification, 2019, 5(3): 702-714.
    [38] 魏波,胡海涛,王科,等. 基于实测数据和行车运行图的高铁牵引变电站负荷预测方法[J]. 电工技术学报,2020,35(1): 179-188.

    WEI Bo, HU Haitao, WANG Ke, et al. Research on traction load forecasting method for high-speed railway traction substation based on measured data and train timetable[J]. Transactions of China Electrotechnical Society, 2020, 35(1): 179-188.
    [39] WU C X, LU S F, XUE F, et al. A two-step method for energy-efficient train operation, timetabling, and onboard energy storage device management[J]. IEEE Transactions on Transportation Electrification, 2021, 7(3): 1822-1833.
    [40] 罗嘉明,韦晓广,高仕斌,等. 高速铁路储能系统容量配置与能量管理技术综述与展望[J]. 中国电机工程学报,2022,42(19): 7028-7051.

    LUO Jiaming, WEI Xiaoguang, GAO Shibin, et al. Summary and outlook of capacity configuration and energy management technology of high-speed railway energy storage system[J]. Proceedings of the CSEE, 2022, 42(19): 7028-7051.
    [41] DÍAZ-GONZÁLEZ F, SUMPER A, GOMIS-BELLMUNT O, et al. A review of energy storage technologies for wind power applications[J]. Renewable and Sustainable Energy Reviews, 2012, 16(4): 2154-2171.
    [42] 袁佳歆,曲锴,郑先锋,等. 高速铁路混合储能系统容量优化研究[J]. 电工技术学报,2021,36(19): 4161-4169,4182.

    YUAN Jiaxin, QU Kai, ZHENG Xianfeng, et al. Optimizing research on hybrid energy storage system of high speed railway[J]. Transactions of China Electrotechnical Society, 2021, 36(19): 4161-4169,4182.
    [43] 薛禹胜,雷兴,薛峰,等. 关于电力系统广域保护的评述[J]. 高电压技术,2012,38(3): 513-520.

    XUE Yusheng, LEI Xing, XUE Feng, et al. Review on wide area protection of electric power systems[J]. High Voltage Engineering, 2012, 38(3): 513-520.
    [44] 井友刚. 电气化铁路广域保护系统自愈重构功能研究与应用[J]. 电气化铁道,2020,31(3): 12-15,32.

    JING Yougang. Study on and application of self-healing reconfiguration function of wide area protection system for electrified railway[J]. Electric Railway, 2020, 31(3): 12-15,32.
    [45] 刘育权,华煌圣,李力,等. 多层次的广域保护控制体系架构研究与实践[J]. 电力系统保护与控制,2015,43(5): 112-122. doi: 10.7667/j.issn.1674-3415.2015.05.018

    LIU Yuquan, HUA Huangsheng, LI Li, et al. Research and application of multi-level wide-area protection system[J]. Power System Protection and Control, 2015, 43(5): 112-122. doi: 10.7667/j.issn.1674-3415.2015.05.018
    [46] 王潘潘. 京张高铁智能牵引供电系统自愈重构方案研究[J]. 电气化铁道,2020,31(增2): 126-131.

    WANG Panpan. Research on self-healing reconstruction scheme of intelligent traction power supply system for Beijing—Zhangjiakou high-speed railway[J]. Electric Railway, 2020, 31(S2): 126-131.
    [47] 尹项根,李振兴,刘颖彤,等. 广域继电保护及其故障元件判别问题的探讨[J]. 电力系统保护与控制,2012,40(5): 1-9. doi: 10.3969/j.issn.1674-3415.2012.05.001

    YIN Xianggen, LI Zhenxing, LIU Yingtong, et al. Study on wide area relaying protection and fault element identification[J]. Power System Protection and Control, 2012, 40(5): 1-9. doi: 10.3969/j.issn.1674-3415.2012.05.001
    [48] 李振坤,赵向阳,朱兰,等. 智能配电网故障后自愈能力评估[J]. 电网技术,2018,42(3): 789-796.

    LI Zhenkun, ZHAO Xiangyang, ZHU Lan, et al. Evaluation of self-healing ability for smart distribution network after failure[J]. Power System Technology, 2018, 42(3): 789-796.
    [49] 张小瑜,吴俊勇. 高速铁路牵引供电系统的供电可靠性评估方法[J]. 电网技术,2007,31(11): 27-32. doi: 10.3321/j.issn:1000-3673.2007.11.006

    ZHANG Xiaoyu, WU Junyong. Reliability estimation method of traction power supply system for high-speed railway[J]. Power System Technology, 2007, 31(11): 27-32. doi: 10.3321/j.issn:1000-3673.2007.11.006
    [50] 周桂法,邵志和,曾嵘. 轨道交通RAMS工作的理解与实施[J]. 机车电传动,2014(2): 1-5,15.

    ZHOU Guifa, SHAO Zhihe, ZENG Rong. Comprehension and implementation of RAMS for rail transit[J]. Electric Drive for Locomotives, 2014(2): 1-5,15.
    [51] YANG X W, HU H T, GE Y B, et al. An improved droop control strategy for VSC-based MVDC traction power supply system[J]. IEEE Transactions on Industry Applications, 2018, 54(5): 5173-5186.
    [52] GOMEZ-EXPOSITO A, MAURICIO J M, MAZA-ORTEGA J M. VSC-based MVDC railway electrification system[J]. IEEE Transactions on Power Delivery, 2014, 29(1): 422-431.
    [53] 程红,高巧梅,朱锦标,等. 基于双重移相控制的双向全桥DC-DC变换器动态建模与最小回流功率控制[J]. 电工技术学报,2014,29(3): 245-253. doi: 10.3969/j.issn.1000-6753.2014.03.031

    CHENG Hong, GAO Qiaomei, ZHU Jinbiao, et al. Dynamic modeling and minimum backflow power controlling of the bi-directional full-bridge DC-DC converters based on dual-phase-shifting control[J]. Transactions of China Electrotechnical Society, 2014, 29(3): 245-253. doi: 10.3969/j.issn.1000-6753.2014.03.031
    [54] 何晓琼,彭俊,韩鹏程,等. 电气化铁路综合补偿器控制策略研究[J]. 铁道学报,2020,42(9): 74-84. doi: 10.3969/j.issn.1001-8360.2020.09.010

    HE Xiaoqiong, PENG Jun, HAN Pengcheng, et al. Study on control strategy of comprehensive compensator for electrified railway[J]. Journal of the China Railway Society, 2020, 42(9): 74-84. doi: 10.3969/j.issn.1001-8360.2020.09.010
    [55] 鲍冠南,陆超,袁志昌,等. 基于动态规划的电池储能系统削峰填谷实时优化[J]. 电力系统自动化,2012,36(12): 11-16.

    BAO Guannan, LU Chao, YUAN Zhichang, et al. Load shift real-time optimization strategy of battery energy storage system based on dynamic programming[J]. Automation of Electric Power Systems, 2012, 36(12): 11-16.
    [56] 邓文丽,戴朝华,张涵博,等. 复杂电气化铁路牵引用光伏发电系统综合优化控制方法研究[J]. 中国电机工程学报,2020,40(18): 5849-5865.

    DENG Wenli, DAI Chaohua, ZHANG Hanbo, et al. Research on comprehensive optimization control method for traction photovoltaic generation system of complex electrified railway[J]. Proceedings of the CSEE, 2020, 40(18): 5849-5865.
    [57] 申建建,曹瑞,苏承国,等. 水火风光多源发电调度系统大数据平台架构及关键技术[J]. 中国电机工程学报,2019,39(1): 43-55,319.

    SHEN Jianjian, CAO Rui, SU Chengguo, et al. Big data platform architecture and key techniques of power generation scheduling for hydro-thermal-wind-solar hybrid system[J]. Proceedings of the CSEE, 2019, 39(1): 43-55,319.
    [58] 胡威,张新燕,郭永辉,等. 基于游程检测法重构CEEMD的短时风功率预测[J]. 太阳能学报,2020,41(11): 317-325.

    HU Wei, ZHANG Xinyan, GUO Yonghui, et al. Short-time wind power prediction of ceemd reconstructed based on run-length detection method[J]. Acta Energiae Solaris Sinica, 2020, 41(11): 317-325.
    [59] HUANG J, THATCHER M. Assessing the value of simulated regional weather variability in solar forecasting using numerical weather prediction[J]. Solar Energy, 2017, 144: 529-539.
    [60] 肖雅君,吴汶麒. 用于轨道交通列车自动控制系统的通信技术[J]. 城市轨道交通研究,2002,5(2): 59-64,72. doi: 10.3969/j.issn.1007-869X.2002.02.013

    XIAO Yajun, WU Wenqi. Communication technology applied in ATC system of UMT[J]. Urban Mass Transit, 2002, 5(2): 59-64,72. doi: 10.3969/j.issn.1007-869X.2002.02.013
    [61] 王凯,刘留,于蒙,等. 超高速列车车地无线通信系统性能分析[J]. 北京交通大学学报,2021,45(4): 117-126. doi: 10.11860/j.issn.1673-0291.20210074

    WANG Kai, LIU Liu, YU Meng, et al. System performance analysis on train-ground wireless communication for the ultra high-speed train[J]. Journal of Beijing Jiaotong University, 2021, 45(4): 117-126. doi: 10.11860/j.issn.1673-0291.20210074
    [62] 王磊,何正友. 高速列车通信网络技术特点及其应用[J]. 城市轨道交通研究,2008,11(2): 57-61,64. doi: 10.3969/j.issn.1007-869X.2008.02.016

    WANG Lei, HE Zhengyou. Technological characteristics of high-speed train communication network and its application[J]. Urban Mass Transit, 2008, 11(2): 57-61,64. doi: 10.3969/j.issn.1007-869X.2008.02.016
    [63] 上官伟,王韦舒,张路,等. 北斗导航RAIM技术在列车定位的应用研究[J]. 铁道学报,2018,40(2): 73-81. doi: 10.3969/j.issn.1001-8360.2018.02.011

    SHANGGUAN Wei, WANG Weishu, ZHANG Lu, et al. Application of BDS-based RAIM technology in train positioning[J]. Journal of the China Railway Society, 2018, 40(2): 73-81. doi: 10.3969/j.issn.1001-8360.2018.02.011
    [64] 肖白,邢世亨,王茂春,等. 基于改进KDE法和GA-SVM的多风电场聚合后输出功率长期波动特性预测方法[J]. 电力自动化设备,2022,42(2): 77-84.

    XIAO Bai, XING Shiheng, WANG Maochun, et al. Prediction method of output power long-term fluctuation characteristic for multiple wind farms after aggregation based on improved KDE method and GA-SVM[J]. Electric Power Automation Equipment, 2022, 42(2): 77-84.
    [65] 易善军,王汉军,向勇,等. 基于集成多尺度LSTM的短时风功率预测[J]. 重庆大学学报,2021,44(7): 75-81. doi: 10.11835/j.issn.1000-582X.2021.07.008

    YI Shanjun, WANG Hanjun, XIANG Yong, et al. Short-term wind power forecasting based on integrated multi-scale LSTM[J]. Journal of Chongqing University, 2021, 44(7): 75-81. doi: 10.11835/j.issn.1000-582X.2021.07.008
    [66] BREKKEN T K A, YOKOCHI A, VON JOUANNE A, et al. Optimal energy storage sizing and control for wind power applications[J]. IEEE Transactions on Sustainable Energy, 2010, 2(1): 69-77.
    [67] 琚垚,祁林,刘帅. 基于改进乌鸦算法和ESN神经网络的短期风电功率预测[J]. 电力系统保护与控制,2019,47(4): 58-64. doi: 10.7667/PSPC180251

    JU Yao, QI Lin, LIU Shuai. Short-term wind power forecasting based on improved crow search algorithm and ESN neural network[J]. Power System Protection and Control, 2019, 47(4): 58-64. doi: 10.7667/PSPC180251
    [68] 徐诗鸿,张宏志,林湘宁,等. 近海海岛多态能源供需自洽系统日前优化调度策略[J]. 中国电机工程学报,2019,39(增1): 15-29.

    XU Shihong, ZHANG Hongzhi, LIN Xiangning, et al. Optimal dispatching strategy of self-consistent supply and demand system of polymorphic energy in offshore islands recently[J]. Proceedings of the CSEE, 2019, 39(S1): 15-29.
    [69] 张丽艳,李群湛,朱毅. 新建电气化铁路牵引负荷预测[J]. 西南交通大学学报,2016,51(4): 743-749. doi: 10.3969/j.issn.0258-2724.2016.04.020

    ZHANG Liyan, LI Qunzhan, ZHU Yi. Prediction of traction load for new electrified railway[J]. Journal of Southwest Jiaotong University, 2016, 51(4): 743-749. doi: 10.3969/j.issn.0258-2724.2016.04.020
    [70] 杨丘帆,黄煜彬,石梦璇,等. 基于一致性算法的直流微电网多组光储单元分布式控制方法[J]. 中国电机工程学报,2020,40(12): 3919-3928.

    YANG Qiufan, HUANG Yubin, SHI Mengxuan, et al. Consensus based distributed control for multiple PV-battery storage units in DC microgrid[J]. Proceedings of the CSEE, 2020, 40(12): 3919-3928.
    [71] 金波,孙鹏飞,王青元,等. 基于混合整数规划的高速列车多区间节能优化研究[J]. 铁道学报,2020,42(2): 11-17.

    JIN Bo, SUN Pengfei, WANG Qingyuan, et al. Energy-saving optimization of multi-interstation high-speed train with mixed integer linear programming[J]. Journal of the China Railway Society, 2020, 42(2): 11-17.
    [72] 荀径,杨欣,宁滨,等. 列车节能操纵优化求解方法综述[J]. 铁道学报,2014,36(4): 14-20. doi: 10.3969/j.issn.1001-8360.2014.04.003

    XUN Jing, YANG Xin, NING Bin, et al. Survey on trajectory optimization for train operation[J]. Journal of the China Railway Society, 2014, 36(4): 14-20. doi: 10.3969/j.issn.1001-8360.2014.04.003
    [73] 冷勇林,陈德旺,阴佳腾. 基于专家系统及在线调整的列车智能驾驶算法[J]. 铁道学报,2014,36(2): 62-68. doi: 10.3969/j.issn.1001-8360.2014.02.010

    LENG Yonglin, CHEN Dewang, YIN Jiateng. An intelligent train operation (ITO) algorithm based on expert system and online adjustment[J]. Journal of the China Railway Society, 2014, 36(2): 62-68. doi: 10.3969/j.issn.1001-8360.2014.02.010
    [74] LU S F, WESTON P, HILLMANSEN S, et al. Increasing the regenerative braking energy for railway vehicles[J]. IEEE Transactions on Intelligent Transportation Systems, 2014, 15(6): 2506-2515.
    [75] 刘宏杰. 结合能量存储的城轨列车调度控制一体化节能优化方法研究[D]. 北京: 北京交通大学,2019.
    [76] 郑亚晶,李耀辉,李雨恒,等. 再生制动条件下地铁列车运行图的节能优化[J]. 华南理工大学学报(自然科学版),2021,49(7): 1-7. doi: 10.12141/j.issn.1000-565X.200552

    ZHENG Yajing, LI Yaohui, LI Yuheng, et al. Energy saving optimization of metro train working diagram under regenerative braking[J]. Journal of South China University of Technology (Natural Science Edition), 2021, 49(7): 1-7. doi: 10.12141/j.issn.1000-565X.200552
    [77] 沈迪,王青元,夏菲,等. 高速列车应急自走行辅助驾驶研究[J]. 机车电传动,2021(1): 91-97.

    SHEN Di, WANG Qingyuan, XIA Fei, et al. Research on urgent operation assistant driving for high-speed train[J]. Electric Drive for Locomotives, 2021(1): 91-97.
    [78] 王青元,冯晓云,朱金陵,等. 考虑再生制动能量利用的高速列车节能最优控制仿真研究[J]. 中国铁道科学,2015,36(1): 96-103. doi: 10.3969/j.issn.1001-4632.2015.01.14

    WANG Qingyuan, FENG Xiaoyun, ZHU Jinling, et al. Simulation study on optimal energy-efficient control of high speed train considering regenerative brake energy[J]. China Railway Science, 2015, 36(1): 96-103. doi: 10.3969/j.issn.1001-4632.2015.01.14
  • 加载中
图(13)
计量
  • 文章访问数:  80
  • HTML全文浏览量:  104
  • PDF下载量:  25
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-03-24
  • 修回日期:  2022-09-27
  • 网络出版日期:  2024-08-24
  • 刊出日期:  2022-12-01

目录

    /

    返回文章
    返回