• ISSN 0258-2724
  • CN 51-1277/U
  • EI Compendex
  • Scopus 收录
  • 全国中文核心期刊
  • 中国科技论文统计源期刊
  • 中国科学引文数据库来源期刊

考虑结构损伤的CFRP修复RC墩柱地震损伤模型研究

龚婉婷 钱永久 徐望喜

龚婉婷, 钱永久, 徐望喜. 考虑结构损伤的CFRP修复RC墩柱地震损伤模型研究[J]. 西南交通大学学报, 2024, 59(2): 332-342. doi: 10.3969/j.issn.0258-2724.20220176
引用本文: 龚婉婷, 钱永久, 徐望喜. 考虑结构损伤的CFRP修复RC墩柱地震损伤模型研究[J]. 西南交通大学学报, 2024, 59(2): 332-342. doi: 10.3969/j.issn.0258-2724.20220176
GONG Wanting, QIAN Yongjiu, XU Wangxi. Seismic Damage Model of RC Pier Repaired with CFRP Considering Initial Damage[J]. Journal of Southwest Jiaotong University, 2024, 59(2): 332-342. doi: 10.3969/j.issn.0258-2724.20220176
Citation: GONG Wanting, QIAN Yongjiu, XU Wangxi. Seismic Damage Model of RC Pier Repaired with CFRP Considering Initial Damage[J]. Journal of Southwest Jiaotong University, 2024, 59(2): 332-342. doi: 10.3969/j.issn.0258-2724.20220176

考虑结构损伤的CFRP修复RC墩柱地震损伤模型研究

doi: 10.3969/j.issn.0258-2724.20220176
基金项目: 国家自然科学基金(51778532)
详细信息
    作者简介:

    龚婉婷(1993—),女,博士研究生,研究方向为桥梁抗震与加固,E-mail:wanting@my.swjtu.edu.cn

    通讯作者:

    钱永久(1963—),男,教授,博士生导师,研究方向为桥梁检测与加固, E-mail:yjqian@sina.com

  • 中图分类号: TU375.3;U445.7.2

Seismic Damage Model of RC Pier Repaired with CFRP Considering Initial Damage

  • 摘要:

    为研究碳纤维材料(CFRP)修复损伤钢筋混凝土(RC)结构遭受地震作用的损伤演化规律,准确量化修复损伤结构状态,进行了10个钢筋混凝土圆墩柱拟静力试验,其中,8个墩柱试件为使用不同CFRP加固方法进行修复的损伤试件. 基于试验结果,对8个典型地震损伤模型进行研究分析,引入材料性能折减系数来考虑结构初始损伤,建立了CFRP修复RC墩柱的双参数地震损伤模型,并根据试验现象和改进的损伤模型对钢筋混凝土结构的损伤程度进行量化分析. 研究表明:使用典型地震损伤模型计算修复柱的损伤指标时,计算试件破坏时的损伤指标普遍偏大,且同一墩柱模型损伤指数的变化趋势有较大差异,损伤指数发展趋势与试验现象不符;根据试件参数进行非线性回归分析,得到了组合系数与设计参数的经验表达式,建议的损伤模型能够较好模拟CFRP修复加固墩柱的地震损伤演化过程;定义了钢筋混凝土结构损伤的5个等级,并给出5个等级的损伤指标界限值;对中等损伤($0.3 < D \leqslant 0.6$,D为损伤指标)的墩柱结构,建议对结构表面修复平整后使用预应力CFRP加固以达到更好的效果.

     

  • 图 1  试件构造详图

    Figure 1.  Structure of specimen

    图 2  加载制度及预损伤方案

    Figure 2.  Loading system and pre-damage scheme

    图 3  试件BCIP损伤过程描述

    Figure 3.  Damage evolution description of specimen BCIP

    图 4  部分试件滞回曲线

    Figure 4.  Hysteretic curves of some specimens

    图 5  损伤指数变化趋势

    Figure 5.  Variation of damage indices

    图 6  本文模型计算试件加载过程损伤指标

    Figure 6.  Damage index of specimens during loading by proposed model

    表  1  试件主要设计参数及结果

    Table  1.   Main design parameters and results of specimens

    序号试件编号加固方式设计参数试验主要结果
    损伤程度d0/mm$ {t}_{\mathrm{f}} $/mm预应力度$ {P}_{\mathrm{m}\mathrm{a}\mathrm{x}} $/kN$ {k}_{\mathrm{h}} $$\int \mathrm{d}E$/(kN·mm)
    1CC000034.6918716.05
    2CC1C普通 CFRP000.167037.310.2827577.85
    3SC1C普通 CFRP0.10.1~0.50.167036.610.2626065.93
    4SC1P预应力 CFRP0.10.1~0.50.1670.240.620.5632374.62
    5MC1C普通 CFRP0.30.5~1.00.167036.220.3024803.49
    6MC1P预应力 CFRP0.30.5~1.00.3340.240.220.4830781.58
    7MC2P预应力 CFRP0.30.5~1.00.3340.242.090.5234563.85
    8BC1C普通 CFRP0.61.0~1.50.167028.690.2319941.42
    9BC1P预应力 CFRP0.61.0~1.50.1670.235.450.4425161.48
    10BC2P预应力 CFRP0.61.0~1.50.3340.236.430.5528356.57
    下载: 导出CSV

    表  2  单参数地震损伤模型

    Table  2.   Single-parameter seismic damage model

    编号研究者模型表达式
    D1Powell 等[16]$ D_1 = {\left( {\dfrac{{{\delta _{\text{m}}} - {\delta _{\text{y}}}}}{{{\delta _{\text{u}}} - {\delta _{\text{y}}}}}} \right)^c} $
    D2Roufaiel 等[17]$ D_2 = \dfrac{{{k_{\text{f}}}\left( {{k_{\text{m}}} - {k_{\text{0}}}} \right)}}{{{k_{\text{m}}}\left( {{k_{\text{f}}} - {k_0}} \right)}} $
    D3Wang 等[18]$D_3=\dfrac{\mathrm{exp}(s\alpha )}{\mathrm{exp}(s)-1},\alpha =c\displaystyle\sum _{i=1}^{N}\dfrac{ {\delta }_{\text{m},i} }{ {\delta }_{\text{f} } }$
    下载: 导出CSV

    表  3  双参数地震损伤模型

    Table  3.   Two-parameter seismic damage model

    编号研究者模型表达式
    D4Park 等[11]$\begin{gathered} {\text{ } }D_4 = \dfrac{ { {\delta _{\text{m} } } }}{ { {\delta _{\text{u} } } }} + \beta \dfrac{ {\smallint {\text{d} }E} }{ { {F_{\text{y} } }{\delta _{\text{u} } } }}, \; \beta = \left( { - 0.447 + 0.073\lambda + 0.24{n_0} + 0.314{\rho _{\text{t} } } } \right) {0.7^{ {\rho _{\text{w} } } }}{\text{ } } \\ \end{gathered}$
    D5Chai 等[5]$\begin{gathered} D_5 = \dfrac{ { {\delta _{\text{m} } } }}{ { {\delta _{\text{u} } } }} + {\beta ^ * }\dfrac{ { {E_{} } } }{ { {F_{\text{y} } }{\delta _{\text{u} } } }}, \; \dfrac{ { {\beta ^*} } }{ { {\beta _{} } } } = \dfrac{ { {\mu _{\text{m} } } }}{ { {\mu _{\text{m} } } + \left( {1 - {\mu _{\text{m} } } } \right){\beta _{} } } }, \; {\mu _{\text{m} } } = {\delta _{\text{u} } }/{\delta _{\text{y} } } \\ \end{gathered}$
    D6王东升等[19]$ \begin{gathered} D_6 = (1 - \beta )\dfrac{{{\delta _{\text{m}}} - {\delta _{\text{y}}}}}{{{\delta _{\text{u}}} - {\delta _{\text{y}}}}} + \frac{{\beta \displaystyle\sum {{\beta_i}} {E_i}}}{{{F_{\text{y}}}\left( {{\delta _{\text{u}}} - {\delta _{\text{y}}}} \right)}},\quad{\delta _{\text{m}}} > {\delta _{\text{y}}}, {\text{ }}{\beta_i} = \left\{ {\begin{array}{*{20}{l}} {{\mathop \gamma \nolimits_{\rm{E}}},\quad{\text{ }}{\mu_i} \leqslant {\mu _0}}, \\ {{\mathop \gamma \nolimits_{\rm{E}}} + \dfrac{{{\mu_i} - {\mu _0}}}{{{\mu_{\rm{p}}} - {\mu _0}}}(1 - {\mathop \gamma \nolimits_{\rm{E}}}),\quad{\mu_i} > {\mu _0}} \end{array}} \right.\begin{array}{*{20}{c}} {{\text{ }}} \\ {{\text{ }}} \end{array} \\ \end{gathered} $
    D7付国等[20]$\begin{gathered} {\text{ } }D_7 = \dfrac{ { {\delta _{\text{m} } } }}{ { {\delta _{\text{u} } } }} + \dfrac{ {\displaystyle\sum { { {e} }_i}{ { {E} }_i} } }{ { {F_{\text{y} } }{\delta _{\text{u} } } }}, \; { { {e} }_i} = \dfrac{1}{ { { {\text{δ} }_{i{\text{m} } } }/{ { {\varDelta } }_{\text{y} } } }}{\log {\left( {\dfrac{ { {\delta _{\text{u} } } }}{ { { {{\varDelta } }_{\text{y} } } } } } \right)} }\left( {\dfrac{ { {\delta _{i{\text{m} } } } } }{ { { {{\varDelta } }_{\text{y} } } } } } \right) \\ \end{gathered}$
    D8傅剑平等[21]$ D_8 = {{\rm{e}}^{\left( {0.13{\mu _{\text{m}}} - 0.39} \right)}}\dfrac{{{\delta _{\text{m}}}}}{{{\delta _{\text{u}}}}} + {{\rm{e}}^{\left( {3.35 - 0.18{\mu _{\text{m}}}} \right)}}\dfrac{{\beta \smallint {\text{d}}E}}{{{F_{\text{y}}}{\delta _{\text{u}}}}} $
    下载: 导出CSV

    表  4  试件破坏时损伤指标均值

    Table  4.   Mean value of damage index during specimen damage

    编号 所有试件破坏时均值 对比柱 SC MC BC 修复试件均值
    D1 0.48 0.47 0.86 0.75 0.75 0.79
    D2 0.67 0.63 1.40 1.06 1.31 1.25
    D3 1.30 1.24 2.56 2.05 2.10 2.24
    D4 1.40 1.33 2.91 2.39 2.73 2.67
    D5 1.77 1.71 3.73 3.06 3.47 3.42
    D6 0.77 0.63 1.76 1.36 1.78 1.63
    D7 0.87 0.98 1.86 1.58 1.58 1.67
    D8 1.35 1.01 2.65 2.14 3.02 2.60
    下载: 导出CSV

    表  5  损伤试件材料性能退化系数

    Table  5.   Degradation coefficient of material property of damaged specimens

    试件名称Park 损伤指数$ {\alpha }_{\rm{F}} $
    SC1C0.10.95
    SC1P0.10.95
    MC1C0.30.86
    MC1P0.30.86
    MC2P0.30.86
    BC1C0.60.73
    BC1P0.60.73
    BC2P0.60.73
    下载: 导出CSV

    表  6  损伤模型组合系数

    Table  6.   Combination coefficient of damage model

    试件编号$\varepsilon $能量项比例/%位移项比例/%
    CC0.0375545
    CC1C0.0274852
    SC1C0.0254555
    SC1P0.0244456
    MC1C0.0234456
    MC1P0.0214159
    MC2P0.0193862
    BC1C0.0204060
    BC1P0.0214060
    BC2P0.0224258
    下载: 导出CSV

    表  7  损伤指标量化

    Table  7.   Quantification of damage index

    损伤程度损伤量损伤状态具体描述
    基本完好$ 0\leqslant D\leqslant 0.100 $未损伤 柱侧向变形不明显,混凝土未开裂或少量裂缝且裂缝宽度小于 0.1 mm,CFRP 平整完好,结构处于弹性阶段,此阶段使用普通 CFRP 修复试件,性能便可得到恢复甚至一定程度增强
    轻微破坏$ 0.100 < D\leqslant 0.300 $轻度损伤 柱身有一定数量水平裂缝,裂缝宽度小于 0.5 mm,柱底部混凝土开裂,CFRP 较平整,使用普通 CFRP 或预应力 CFRP 修复结构都可以得到较好效果
    中度破坏$ 0.300 < D\leqslant 0.600 $可修复 柱脚出现细微斜裂缝,裂缝宽度小于 1.0 mm,柱底水平裂缝一定程度开展,应该对已有裂缝进行处理后外包 CFRP 修复,此阶段建议使用预应力 CFRP 进行修复,对于重要结构预应力 CFRP 加固可作为应急修复方法
    严重破坏$ 0.600 < D\leqslant 0.900 $不可修复 试件在此阶段承载力急速下降,刚度退化严重,CFRP 鼓曲变形,纵筋屈曲,有效约束面积急剧减小
    倒塌$ 0.900 < D\leqslant 1.00 $结构失效 纵筋屈曲、断裂,混凝土压溃,结构完全失效
    下载: 导出CSV
  • [1] 吴波,欧进萍. 钢筋砼结构在主余震作用下的反应与损伤分析[J]. 建筑结构学报,1993,14(5): 45-53. doi: 10.14006/j.jzjgxb.1993.05.006

    WU Bo, OU Jinping. Response and damage analysis of reinforced concrete structures under main shock and aftershocks[J]. Journal of Building Structures, 1993, 14(5): 45-53. doi: 10.14006/j.jzjgxb.1993.05.006
    [2] 贾宏宇,杨健,郑史雄,等. 跨断层桥梁抗震综述[J]. 西南交通大学学报,2021,56(5): 1075-1093.

    JIA Hongyu, YANG Jian, ZHENG Shixiong, et al. A review on aseismic bridges crossing fault rupture regions[J]. Journal of Southwest Jiaotong University, 2021, 56(5): 1075-1093.
    [3] MAI A D, SHEIKH M N, HADI M. Investigation on the behaviour of partial wrapping in comparison with full wrapping of square RC columns under different loading conditions[J]. Construction and Building Materials, 2018, 168: 153-168. doi: 10.1016/j.conbuildmat.2018.02.003
    [4] 周长东,田腾,吕西林,等. 预应力碳纤维条带加固混凝土圆墩抗震性能试验[J]. 中国公路学报,2012,25(4): 57-66. doi: 10.3969/j.issn.1001-7372.2012.04.010

    ZHOU Changdong, TIAN Teng, LÜ Xilin, et al. Test on seismic performance of RC circular piers strengthened with pre-stressed CFRP belts[J]. China Journal of Highway and Transport, 2012, 25(4): 57-66. doi: 10.3969/j.issn.1001-7372.2012.04.010
    [5] CHAI Y H, ROMSTAD K M, BIRD S M. Energy-based linear damage model forhigh-intensity seismic loading[J]. Journal of Structural Engineering, 1995, 32(8): 857-864.
    [6] SUN Z G, LI H N, BI K M, et al. Rapid repair techniques for severely earthquake-damaged circular bridge piers with flexural failure mode[J]. Earthquake Engineering and Engineering Vibration, 2017, 16(2): 415-433. doi: 10.1007/s11803-017-0390-0
    [7] WU R Y, PANTELIDES C P. Rapid repair and replacement of earthquake-damaged concrete columns using plastic hinge relocation[J]. Composite Structures, 2017, 180(15): 467-483.
    [8] 苏磊,陆洲导,张克纯,等. BFRP加固震损混凝土框架节点抗震性能试验研究[J]. 东南大学学报(自然科学版),2010,40(3): 559-564. doi: 10.3969/j.issn.1001-0505.2010.03.024

    SU Lei, LU Zhoudao, ZHANG Kechun, et al. Experimental study on BFRP-reinforced pre-damaged concrete column-beam joints by simulated earthquake[J]. Journal of Southeast University (Natural Science Edition), 2010, 40(3): 559-564. doi: 10.3969/j.issn.1001-0505.2010.03.024
    [9] 陶毅,古金本,信任,等. CFRP网格修复后多层砌体结构墙体的抗震性能[J]. 西南交通大学学报,2019,54(6): 1258-1267. doi: 10.3969/j.issn.0258-2724.20170491

    TAO Yi, GU Jinben, XIN Ren, et al. seismic performance of multi-storey masonry wall repaired by carbon fiber reinforced polymer grids[J]. Journal of Southwest Jiaotong University, 2019, 54(6): 1258-1267. doi: 10.3969/j.issn.0258-2724.20170491
    [10] 陈伟宏,乔泽惠,首维荣. CFRP加固震损非延性RC框架抗震性能试验研究[J]. 西南交通大学学报,2020,55(5): 1009-1016. doi: 10.3969/j.issn.0258-2724.20181068

    CHEN Weihong, QIAO Zehui, SHOU Weirong. Experimental study on seismic performance of carbon fibre reinforced plastics-retrofitted earthquake-damaged non-ductile reinforced concrete frames[J]. Journal of Southwest Jiaotong University, 2020, 55(5): 1009-1016. doi: 10.3969/j.issn.0258-2724.20181068
    [11] PARK Y J, ANG A H S, ASCE F. Mechanistic seismic damage model for reinforced concrete[J]. Journal of Structural Engineering, 1985, 111(4): 722-739. doi: 10.1061/(ASCE)0733-9445(1985)111:4(722)
    [12] 郑山锁,石磊,周炎,等. 考虑锈蚀的钢框架柱地震损伤模型研究[J]. 地震工程学报,2018,40(6): 1211-1216.

    ZHENG Shansuo, SHI Lei, ZHOU Yan, et al. Research on a seismic damage model of steel frame columns considering corrosion[J]. China Earthquake Engineering Journal, 2018, 40(6): 1211-1216.
    [13] 王东升,冯启民,王国新. 考虑低周疲劳寿命的改进Park-Ang地震损伤模型[J]. 土木工程学报,2004,32(11): 41-49. doi: 10.3321/j.issn:1000-131X.2004.11.007

    WANG Dongsheng, FENG Qimin, WANG Guoxin. A modified park-ang seismic damage model considering low-cycle fatigue life[J]. China Civil Engineering Journal, 2004, 32(11): 41-49. doi: 10.3321/j.issn:1000-131X.2004.11.007
    [14] 欧进萍,何政,吴斌,等. 钢筋混凝土结构基于地震损伤性能的设计[J]. 地震工程与工程振动,1999,19(1): 21-30.

    OU Jinping, HE Zheng, WU Bin, et al. Seismic damage performance-based design of reinfored concrete structures[J]. Earthquake Engineering and Engineering Vibration, 1999, 19(1): 21-30.
    [15] 陆本燕,刘伯权,吴涛,等. 基于RC桥梁墩柱的地震损伤模型比较分析[J]. 土木工程学报,2010,43(增1): 186-191. doi: 10.15951/j.tmgcxb.2010.s1.024

    LU Benyan, LIU Boquan, WU Tao, et al. Comparative analysis of seismic damage models for reinforced concrete bridge piers[J]. China Civil Engineering Journal, 2010, 43(S1): 186-191. doi: 10.15951/j.tmgcxb.2010.s1.024
    [16] POWELL G H, ALLAHABADI R. Seismic damage prediction by deterministic methods: concepts and procedures[J]. Earthquake Engineering & Structural Dynamics, 1988, 16(5): 719-734.
    [17] ROUFAIEL M S L, MEYER C. Analytical modeling of hysteretic behavior of R/C frames[J]. Journal of Structural Engineering, 1987, 113(3): 429-444. doi: 10.1061/(ASCE)0733-9445(1987)113:3(429)
    [18] WANG M L, SURENDRA P S. Reinforced concrete hysteresis model based on the damage concept[J]. Mathematical and Computer Modelling, 1989, 12(3): 377-378.
    [19] 王东升,司炳君,艾庆华,等. 改进的Park-Ang地震损伤模型及其比较[J]. 工程抗震与加固改造,2005,27(增1): 144-150.

    WANG Dongsheng, SI Bingjun, AI Qinghua, et al. A comparative study of modified park-ang model and park-ang model for structural seismic damage evaluation[J]. Earthquake Resistant Engineering, 2005, 27(S1): 144-150.
    [20] 付国,刘伯权,邢国华. 基于有效耗能的改进Park-Ang双参数损伤模型及其计算研究[J]. 工程力学,2013,30(7): 84-90. doi: 10.6052/j.issn.1000-4750.2012.01.0051

    FU Guo, LIU Boquan, XING Guohua. The research and calculation on modified park-ang double parameter seismic damage model based on energy dissipation[J]. Engineering Mechanics, 2013, 30(7): 84-90. doi: 10.6052/j.issn.1000-4750.2012.01.0051
    [21] 傅剑平,王敏,白绍良. 对用于钢筋混凝土结构的Park-Ang双参数破坏准则的识别和修正[J]. 地震工程与工程振动,2005,25(5): 73-79.

    FU Jianping, WANG Min, BAI Shaoliang. Identification and modification of the Park-Ang criterion for failure of RC structures[J]. Earthquake Engineering and Engineering Vibration, 2005, 25(5): 73-79.
    [22] 刘杰东. 震损钢筋混凝土框架滞回模型研究[D]. 重庆: 重庆大学, 2015.
    [23] VOSOOGHI A, SAIIDI M. Design guidelines for rapid repair of earthquake-damaged circular RC bridge columns using CFRP[J]. Journal of Bridge Engineering, 2013, 18(9): 827-836. doi: 10.1061/(ASCE)BE.1943-5592.0000426
    [24] 陈林之,蒋欢军,吕西林. 修正的钢筋混凝土结构Park-Ang损伤模型[J]. 同济大学学报(自然科学版),2010,38(8): 1103-1107. doi: 10.3969/j.issn.0253-374x.2010.08.001

    CHEN Linzhi, JIANG Huanjun, LÜ Xilin. Modified Park-Ang damage model for reinforced concrete structures[J]. Journal of Tongji University (Natural Science), 2010, 38(8): 1103-1107. doi: 10.3969/j.issn.0253-374x.2010.08.001
    [25] HARAJLI M. Axial stress-strain relationship for FRP confined circular and rectangular concrete columns[J]. Cement & Concrete Composites, 2006, 28(10): 938-948.
    [26] 沈祖炎,董宝,曹文衔. 结构损伤累积分析的研究现状和存在的问题[J]. 同济大学学报(自然科学版),1997,25(2): 135-140.

    SHEN Zuyan, DONG Bao, CAO Wenxian. Development and evaluation of researches on damage cumulation analysis for building structures[J]. Journal of Tongji University (Natural Science), 1997, 25(2): 135-140.
    [27] 中国地震局工程力学研究所. 建(构)筑物地震破坏等级划分: GB/T 24335—2009[S]. 北京: 中国标准出版社, 2009
    [28] 刘艳辉,赵世春,强士中. 城市高架桥抗震性能水准的量化[J]. 西南交通大学学报,2010,45(1): 54-58,64.

    LIU Yanhui, ZHAO Shichun, QIANG Shizhong. Quantification of seismic performance levels for urban viaduct[J]. Journal of Southwest Jiaotong University, 2010, 45(1): 54-58,64.
  • 加载中
图(6) / 表(7)
计量
  • 文章访问数:  261
  • HTML全文浏览量:  55
  • PDF下载量:  31
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-03-08
  • 修回日期:  2022-06-11
  • 网络出版日期:  2023-09-18
  • 刊出日期:  2022-07-07

目录

    /

    返回文章
    返回