• ISSN 0258-2724
  • CN 51-1277/U
  • EI Compendex
  • Scopus 收录
  • 全国中文核心期刊
  • 中国科技论文统计源期刊
  • 中国科学引文数据库来源期刊

基于离散元方法的道床捣固及吹砟维护机理

陈成 饶文锦 李文俊 张磊 汤语嫣

陈成, 饶文锦, 李文俊, 张磊, 汤语嫣. 基于离散元方法的道床捣固及吹砟维护机理[J]. 西南交通大学学报, 2024, 59(2): 256-263, 306. doi: 10.3969/j.issn.0258-2724.20220171
引用本文: 陈成, 饶文锦, 李文俊, 张磊, 汤语嫣. 基于离散元方法的道床捣固及吹砟维护机理[J]. 西南交通大学学报, 2024, 59(2): 256-263, 306. doi: 10.3969/j.issn.0258-2724.20220171
CHEN Cheng, RAO Wenjin, LI Wenjun, ZHANG Lei, TANG Yuyan. Maintenance Mechanism of Ballast Tamping and Stone-Blowing Using Discrete Element Method[J]. Journal of Southwest Jiaotong University, 2024, 59(2): 256-263, 306. doi: 10.3969/j.issn.0258-2724.20220171
Citation: CHEN Cheng, RAO Wenjin, LI Wenjun, ZHANG Lei, TANG Yuyan. Maintenance Mechanism of Ballast Tamping and Stone-Blowing Using Discrete Element Method[J]. Journal of Southwest Jiaotong University, 2024, 59(2): 256-263, 306. doi: 10.3969/j.issn.0258-2724.20220171

基于离散元方法的道床捣固及吹砟维护机理

doi: 10.3969/j.issn.0258-2724.20220171
基金项目: 国家自然科学基金(51708438,52178353);中央高校基本科研业务费(225206001,022CG030)
详细信息
    作者简介:

    陈成(1987—),男,副教授,博士,研究方向为有砟轨道沉降及离散元数值模拟,E-mail:chengchen87@whut.edu.cn

    通讯作者:

    张磊(1983—),男,副教授,博士,研究方向为岩土材料与结构之间相互作用,E-mail:zhangleigeo@whut.edu.cn

  • 中图分类号: U216.422

Maintenance Mechanism of Ballast Tamping and Stone-Blowing Using Discrete Element Method

  • 摘要:

    为从细观上研究捣固和吹砟的维护机理,建立了离散元道砟箱数值模型,并耦合多体动力学的捣固镐模型和计算流体力学的吹砟管模型,对捣固与吹砟的作业全过程进行可视化模拟,基于离散元耦合数值模拟,对比分析了2种道床维护方法对道床扰动及作业后轨枕沉降. 结果表明:吹砟作业各阶段对道床的扰动和道砟平均接触力均小于捣固,且扰动主要集中在下插阶段,吹砟作业过程中道砟颗粒速度峰值和接触应力峰值仅为捣固的37.5%和38.9%;捣固后,轨枕底部区域密实度提高了约13.6%,轨枕间上部和下部区域密实度分别降低了约21.0%和提高了约4.8%;吹砟后,轨枕底部区域密实度提高了约6.5%,轨枕间上部和下部区域密实度几乎无变化;在轨枕底部吹入碎石,吹砟作业极大地改善了轨枕底的接触状态和应力扩散,轨枕与道砟颗粒接触数增加了约243%,荷载传递更均匀;1 000次循环加载后,吹砟作业后的轨枕沉降相较捣固和未维护工况分别减少了约18.1%和44.4%.

     

  • 图 1  道砟与吹砟碎石颗粒建模与级配曲线

    Figure 1.  Modeling and gradation curves of ballast and crushed stone particles by stone-blowing

    图 2  吹砟管模型

    Figure 2.  Stone-blowing models

    图 3  道砟箱捣固模型和吹砟模型

    Figure 3.  Ballast box tamping and stone-blowing models

    图 4  捣固模拟全过程

    Figure 4.  Simulation of whole tamping process

    图 5  吹砟模拟全过程

    Figure 5.  Simulation of whole stone-blowing process

    图 6  捣固与吹砟全过程中道砟平均速度变化曲线

    Figure 6.  Variation curves of ballast average velocity during tamping and stone-blowing operations

    图 7  捣固与吹砟各步骤道砟接触力状况

    Figure 7.  Ballast contact force in each stage of tamping and stone-blowing

    图 8  捣固与吹砟全过程道床密实度变化曲线

    Figure 8.  Compaction curves of ballast during whole tamping and stone-blowing processes

    图 9  轨枕加载沉降曲线

    Figure 9.  Loading settlement curves of sleeper

    图 10  轨枕接触点数变化曲线

    Figure 10.  Change curves of number of sleeper contact points

    图 11  道砟接触应力链分布对比

    Figure 11.  Comparison of contact force distribution in ballast

    表  1  DEM耦合模拟的参数

    Table  1.   Parameters of DEM coupling simulation

    模型结构泊松比剪切模量/GPa密度/(kg·m−3摩擦系数
    道砟0.30202 7000.55
    吹砟碎石0.30202 7000.55
    轨枕0.23152 8000.85
    捣固镐0.29807 8000.40
    吹砟管0.29807 8000.40
    下载: 导出CSV
  • [1] 翟婉明,赵春发. 现代轨道交通工程科技前沿与挑战[J]. 西南交通大学学报,2016,51(2): 209-226.

    ZHAI Wanming, ZHAO Chunfa. Frontiers and challenges of sciences and technologies in modern railway engineering[J]. Journal of Southwest Jiaotong University, 2016, 51(2): 209-226.
    [2] GUO Y L, MARKINE V L, JING G Q. Review of ballast track tamping: mechanism, challenges and solutions[J]. Construction and Building Materials, 2021, 300: 123940.1-123940.22. doi: 10.1016/j.conbuildmat.2021.123940
    [3] FASTENRATH F. Railroad track theory and practice[M]. New York: Frederick Publishing, 2003: 175-178.
    [4] ESVELD C. Modern railway track[M]. 2nd ed. Zaltbommel: MRT-productions, 2001: 369-373.
    [5] MCMICHAEL P L. The economics of stoneblowing for the maintenance of way[C]//International Heavy Haul Railway Conference. Vancouver: International Heavy Haul Association, 1991: 98-104.
    [6] SOL-SÁNCHEZ M, MORENO-NAVARRO F, RUBIO-GÁMEZ M C. Analysis of ballast tamping and stone-blowing processes on railway track behaviour: the influence of using USPs[J]. Géotechnique, 2016, 66(6): 481-489.
    [7] ANDERSON W F, KEY A J. Model testing of two-layer railway track ballast[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2000, 126(4): 317-323. doi: 10.1061/(ASCE)1090-0241(2000)126:4(317)
    [8] AURSUDKIJ B. A laboratory study of railway ballast behaviour under traffic loading and tamping maintenance[D]. Nottingham: University of Nottingham, 2007.
    [9] BOLER H, MISHRA D, TUTUMLUER E, et al. Stone blowing as a remedial measure to mitigate differential movement problems at railroad bridge approaches[J]. Proceedings of the Institution of Mechanical Engineers, Part F: Journal of Rail and Rapid Transit, 2019, 233(1): 63-72. doi: 10.1177/0954409718778654
    [10] 王众保,许永贤,王红,等. 大型养路机械捣固作业参数对捣固效果影响规律的研究[J]. 铁道建筑,2020,60(1): 129-133. doi: 10.3969/j.issn.1003-1995.2020.01.30

    WANG Zhongbao, XU Yongxian, WANG Hong, et al. Study on influence laws of working parameters of heavy-duty maintenance machinery tamping on tamping effect[J]. Railway Engineering, 2020, 60(1): 129-133. doi: 10.3969/j.issn.1003-1995.2020.01.30
    [11] SHI S W, GAO L, CAI X P, et al. Effect of tamping operation on mechanical qualities of ballast bed based on DEM-MBD coupling method[J]. Computers and Geotechnics, 2020, 124: 103574.1-103574.10.
    [12] SHI S W, DAO L, XIAO H, et al. Research on ballast breakage under tamping operation based on DEM-MBD coupling approach[J]. Construction and Building Materials, 2021, 272: 121810.1-121810.13.
    [13] LIU J X, WANG P, LIU G Z, et al. Influence of a tamping operation on the vibrational characteristics and resistance-evolution law of a ballast bed[J]. Construction and Building Materials, 2020, 239: 117879.1-117879.14.
    [14] 井国庆,高亮,邵磊. 吹砟车维修机理离散元仿真与应用[J]. 铁道工程学报,2011,28(11): 58-62. doi: 10.3969/j.issn.1006-2106.2011.11.011

    JING Guoqing, GAO Liang, SHAO Lei. Simulation and application of maintenance mechanism of ballast blowing car with DEM[J]. Journal of Railway Engineering Society, 2011, 28(11): 58-62. doi: 10.3969/j.issn.1006-2106.2011.11.011
    [15] 陈成, 饶文锦, 朱思凡, 等. 多通道吹砟装置和方法: CN113494030B[P]. 2022-10-14.
    [16] INDRARATNA B, NGO N T, RUJIKIATKAMJORN C, et al. Behavior of fresh and fouled railway ballast subjected to direct shear testing: discrete element simulation[J]. International Journal of Geomechanics, 2014, 14(1): 34-44. doi: 10.1061/(ASCE)GM.1943-5622.0000264
    [17] 李朋. 铁路碎石道床车致垂向振动特性分析[D]. 成都: 西南交通大学, 2020.
    [18] KIM D S, HWANG S H, KONO A, et al. Evaluation of ballast compactness during the tamping process by using an image-based 3D discrete element method[J]. Proceedings of the Institution of Mechanical Engineers, Part F: Journal of Rail and Rapid Transit, 2018, 232(7): 1951-1964. doi: 10.1177/0954409718754927
    [19] CHEN C, INDRARATNA B, MCDOWELL G, et al. Discrete element modelling of lateral displacement of a granular assembly under cyclic loading[J]. Computers and Geotechnics, 2015, 69: 474-484. doi: 10.1016/j.compgeo.2015.06.006
  • 加载中
图(11) / 表(1)
计量
  • 文章访问数:  151
  • HTML全文浏览量:  41
  • PDF下载量:  33
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-03-06
  • 修回日期:  2022-04-24
  • 网络出版日期:  2023-08-10
  • 刊出日期:  2022-05-23

目录

    /

    返回文章
    返回