• ISSN 0258-2724
  • CN 51-1277/U
  • EI Compendex
  • Scopus 收录
  • 全国中文核心期刊
  • 中国科技论文统计源期刊
  • 中国科学引文数据库来源期刊

气爆过程中折板型竖井水力特性试验研究

杨乾 杨庆华 陈峰 牛丙坤

杨乾, 杨庆华, 陈峰, 牛丙坤. 气爆过程中折板型竖井水力特性试验研究[J]. 西南交通大学学报, 2023, 58(5): 1026-1036. doi: 10.3969/j.issn.0258-2724.20220163
引用本文: 杨乾, 杨庆华, 陈峰, 牛丙坤. 气爆过程中折板型竖井水力特性试验研究[J]. 西南交通大学学报, 2023, 58(5): 1026-1036. doi: 10.3969/j.issn.0258-2724.20220163
YANG Qian, YANG Qinghua, CHEN Feng, NIU Bingkun. Experimental Study on Hydraulic Characteristics in Baffle-Drop Shaft During Gas Explosion[J]. Journal of Southwest Jiaotong University, 2023, 58(5): 1026-1036. doi: 10.3969/j.issn.0258-2724.20220163
Citation: YANG Qian, YANG Qinghua, CHEN Feng, NIU Bingkun. Experimental Study on Hydraulic Characteristics in Baffle-Drop Shaft During Gas Explosion[J]. Journal of Southwest Jiaotong University, 2023, 58(5): 1026-1036. doi: 10.3969/j.issn.0258-2724.20220163

气爆过程中折板型竖井水力特性试验研究

doi: 10.3969/j.issn.0258-2724.20220163
基金项目: 国家自然科学基金(51478403)
详细信息
    作者简介:

    杨乾(1990—),男,工程师,博士,研究方向为工程流体力学,E-mail:yangqian-swjtu@foxmail.com

    通讯作者:

    杨庆华(1976—),男,副教授,博士,研究方向为工程流体力学,E-mail:qhyang@home.swjtu.edu.cn

  • 中图分类号: TU992.1

Experimental Study on Hydraulic Characteristics in Baffle-Drop Shaft During Gas Explosion

  • 摘要:

    为研究水深、进气压、进气量和干/湿区连通面积等参数与气爆产生机制之间的响应关系,首先,构建了1∶50水力模型试验系统,观测气爆喷射过程并分析竖井内压强变化规律;其次,通过气爆定义建立了竖井最大喷射高度预测模型及产生气爆临界条件;最后,对比分析了多种变量对竖井底部不同折板冲击荷载的影响. 结果表明:气爆过程中折板型竖井内压强剧烈波动,一方面是由于高压气团的释放所导致,另一方面是因高速运动的水气混合物使得竖井内局部气压不平衡所形成;采用多元线性回归模型建立的经验公式可有效预测折板型竖井气爆最大喷射高度;结合不同变量与气爆强度之间响应关系提出的临界条件能够准确判断气爆是否发生;产生气爆时竖井底部折板的水冲击荷载除了与进气压、折板淹没状态、测点位置等因素有关以外,还与水气混合物喷射在折板底部时的随机性有关,气爆过程中折板下方最大水冲击荷载大于10倍正常泄流状态下折板表面的水动力荷载.

     

  • 图 1  试验装置示意(单位:m)

    Figure 1.  Experimental setup (unit: m)

    图 2  气爆过程中不同时刻对应的几种典型状态

    Figure 2.  Typical states at different times during gas explosion

    图 3  联络管压强变化规律

    Figure 3.  Variation law of pressure in connecting pipe

    图 4  不同水深下pc变化规律

    Figure 4.  Variation law of pc under different water depths

    图 5  干区出口压强变化规律

    Figure 5.  Variation law of outlet pressure of dry side

    图 6  不同进气压下pd变化规律

    Figure 6.  Variation law of pd under different inlet pressures

    图 7  水气混合物喷射速度时程曲线

    Figure 7.  Jetting velocity time history curve of air-water mixture

    图 8  hg/D预测值与实测值对比

    Figure 8.  Comparison of predicted and measured hg/D

    图 9  产生气爆的临界条件

    Figure 9.  Critical condition for gas explosion

    图 10  折板水冲击荷载时程曲线

    Figure 10.  Time-history curve of hydrodynamic load on baffles

    图 11  不同进气压下不同测点的最大荷载

    Figure 11.  Maximum load on measured points under different inlet pressures

    表  1  气爆模型试验参数及取值

    Table  1.   Test parameters and values of gas explosion model

    参数 取值
    hw 0.167、0.250、0.333、0.417
    pw 0.50、1.00、1.50、2.00、2.50、3.00、3.50、4.00
    Vw,in 0.026、0.052、0.078
    Sw,i 0、0.159、0.318、0.478
    下载: 导出CSV

    表  2  不同工况下气爆喷射最大速度及最大高度

    Table  2.   Maximum jetting velocity and height under different conditions during gas explosion

    工况pwhwVw,invg/(m·s−1)hg/m工况pwhwVw,invg/(m·s−1)hg/m
    1 4.00 0.167 0.026 9.023 1.84 13 2.00 0.250 0.052 9.886 2.23
    2 3.50 0.250 0.026 8.534 1.65 14 2.50 0.250 0.052 10.807 2.67
    3 4.00 0.250 0.026 9.146 2.05 15 3.00 0.250 0.052 11.574 3.03
    4 3.00 0.333 0.026 8.703 1.74 16 1.00 0.250 0.078 8.369 1.56
    5 3.50 0.333 0.026 9.839 2.20 17 1.50 0.250 0.078 10.117 2.34
    6 4.00 0.333 0.026 10.487 2.47 18 2.00 0.250 0.078 10.958 2.69
    7 2.00 0.417 0.026 7.535 1.33 19 3.50 0.167 0.026 临界条件
    8 2.50 0.417 0.026 8.245 1.54 20 3.00 0.250 0.026 临界条件
    9 3.00 0.417 0.026 8.827 1.79 21 2.50 0.333 0.026 临界条件
    10 3.50 0.417 0.026 10.303 2.42 22 1.50 0.417 0.026 临界条件
    11 4.00 0.417 0.026 11.347 2.81 23 1.00 0.250 0.052 临界条件
    12 1.50 0.250 0.052 8.355 1.57 24 0.50 0.250 0.078 临界条件
    下载: 导出CSV
  • [1] WRIGHT S J, LEWIS J W, VASCONCELOS J G. Geysering in rapidly filling storm-water tunnels[J]. Journal of Hydraulic Engineering, 2011, 137(1): 112-115. doi: 10.1061/(ASCE)HY.1943-7900.0000245
    [2] POZOS-ESTRADA O, POTHOF I, FUENTES-MARILES O A, et al. Failure of a drainage tunnel caused by an entrapped air pocket[J]. Urban Water Journal, 2015, 12(6): 446-454. doi: 10.1080/1573062X.2015.1041990
    [3] SONG C C S, GUO Q Z, ZHENG Y F. Hydraulic transient modeling of TARP systems[R]. Minneapolis: University of Minnesota, Minneapolis, 1988.
    [4] GUO Q Z, SONG C. Dropshaft hydrodynamics under transient conditions[J]. Journal of Hydraulic Engineering, 1991, 117(8): 1042-1055. doi: 10.1061/(ASCE)0733-9429(1991)117:8(1042)
    [5] LEON A S. Mechanisms that lead to violent geysers in vertical shafts[J]. Journal of Hydraulic Research, 2019, 57(3): 295-306. doi: 10.1080/00221686.2018.1459895
    [6] LEON A S, ELAYEB I S, TANG Y. An experimental study on violent geysers in vertical pipes[J]. Journal of Hydraulic Research, 2019, 57(3): 283-294. doi: 10.1080/00221686.2018.1494052
    [7] VASCONCELOS J G, WRIGHT S J. Geysering generated by large air pockets released through water-filled ventilation shafts[J]. Journal of Hydraulic Engineering, 2011, 137(5): 543-555. doi: 10.1061/(ASCE)HY.1943-7900.0000332
    [8] LEWIS J, WRIGHT S J, VASCONCELOS J, et al. Mechanisms for surges in vertical shafts in stormwater tunnels[J]. Journal of Water Management Modeling, 2011: 41-55.
    [9] VASCONCELOS J G, WRIGHT S J. Investigation of rapid filling of poorly ventilated stormwater storage tunnels[J]. Journal of Hydraulic Research, 2009, 47(5): 547-558. doi: 10.3826/jhr.2009.3390
    [10] SHAO Z Y, YOST S A. Using a multiphase flow numerical model to simulate geysers in stormwater systems[C]//World Environmental and Water Resources Congress 2013. Cincinnati: ASCE, 2013: 1827-1838.
    [11] ZHOU F, HICKS F E, STEFFLER P M. Transient flow in a rapidly filling horizontal pipe containing trapped air[J]. Journal of Hydraulic Engineering, 2002, 128(6): 625-634. doi: 10.1061/(ASCE)0733-9429(2002)128:6(625)
    [12] CHEGINI T, LEON A S. Numerical investigation of field-scale geysers in a vertical shaft[J]. Journal of Hydraulic Research, 2020, 58(3): 503-515. doi: 10.1080/00221686.2019.1625817
    [13] LI X, ZHANG J, ZHU D Z, et al. Modeling geysers triggered by an air pocket migrating with running water in a pipeline[J]. Physics of Fluids, 2023, 35(4): 045126. doi: 10.1063/5.0138342
    [14] 安瑞冬,游景皓,廖磊等. 深层隧道排水系统中井隧水力学特性研究[J]. 水利学报,2021,52(12): 1498-1507. doi: 10.13243/j.cnki.slxb.20210090

    AN Ruidong, YOU Jinghao, LIAO lei, et al. Study on the hydraulic characteristics of dropshaft and tunnel in the deep tunnel drainage system[J]. Journal of Hydraulic Engineering, 2021, 52(12): 1498-1507. doi: 10.13243/j.cnki.slxb.20210090
    [15] BASHIRI-ATRABI H, HOSODA T. The motion of entrapped air cavities in inclined ducts[J]. Journal of Hydraulic Research, 2015, 53(6): 814-819. doi: 10.1080/00221686.2015.1060272
    [16] HUANG B, WU S Q, ZHU D Z, et al. Experimental study of geysers through a vent pipe connected to flowing sewers[J]. Water Science and Technology: a Journal of the International Association on Water Pollution Research, 2017, 2017(1): 66-76.
    [17] LIU J C, ZHANG S Q, HUANG B, et al. Numerical study on effects of chamber design and multi-inlet on storm geyser[J]. Water Science and Technology: a Journal of the International Association on Water Pollution Research, 2021, 83(6): 1286-1299. doi: 10.2166/wst.2021.061
    [18] DAVIES R M, TAYLOR G. The mechanics of large bubbles rising through extended liquids and through liquids in tubes[J]. Proceedings of the Royal Society A, 1950, 200(1062): 375-390.
    [19] WRIGHT S J, LEWIS J, VASCONCELOS J, et al. Mechanisms for stormwater surges in vertical shafts[J]. Journal of Water Management Modeling, 2007: 109-131.
    [20] YANG Q H, YANG Q. Experimental investigation of hydraulic characteristics and energy dissipation in a baffle-drop shaft[J]. Water Science and Technology: a Journal of the International Association on Water Pollution Research, 2020, 82(8): 1603-1613. doi: 10.2166/wst.2020.441
    [21] 刘万海,王翔. 动能定理在物理问题教学中的应用: 以空气阻力上抛运动为例[J]. 绵阳师范学院学报,2020,39(5): 20-23,30.

    LIU Wanhai, WANG Xiang. The application of kinetic energy theorem in the teaching of practical physics: an example of up-throw motion in air[J]. Journal of Mianyang Teachers’ College, 2020, 39(5): 20-23,30.
  • 加载中
图(11) / 表(2)
计量
  • 文章访问数:  195
  • HTML全文浏览量:  60
  • PDF下载量:  23
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-03-04
  • 修回日期:  2023-01-13
  • 网络出版日期:  2023-05-30
  • 刊出日期:  2023-02-24

目录

    /

    返回文章
    返回