• ISSN 0258-2724
  • CN 51-1277/U
  • EI Compendex
  • Scopus 收录
  • 全国中文核心期刊
  • 中国科技论文统计源期刊
  • 中国科学引文数据库来源期刊

高速列车底部结构参数对气动噪声影响规律

陈羽 柳壹明 毛懋 李启良 王毅刚 杨志刚

陈羽, 柳壹明, 毛懋, 李启良, 王毅刚, 杨志刚. 高速列车底部结构参数对气动噪声影响规律[J]. 西南交通大学学报, 2023, 58(5): 1171-1179. doi: 10.3969/j.issn.0258-2724.20220148
引用本文: 陈羽, 柳壹明, 毛懋, 李启良, 王毅刚, 杨志刚. 高速列车底部结构参数对气动噪声影响规律[J]. 西南交通大学学报, 2023, 58(5): 1171-1179. doi: 10.3969/j.issn.0258-2724.20220148
CHEN Yu, LIU Yiming, MAO Mao, LI Qiliang, WANG Yigang, YANG Zhigang. Influence of Underbody Parameters of High-Speed Trains on Aerodynamic Noise[J]. Journal of Southwest Jiaotong University, 2023, 58(5): 1171-1179. doi: 10.3969/j.issn.0258-2724.20220148
Citation: CHEN Yu, LIU Yiming, MAO Mao, LI Qiliang, WANG Yigang, YANG Zhigang. Influence of Underbody Parameters of High-Speed Trains on Aerodynamic Noise[J]. Journal of Southwest Jiaotong University, 2023, 58(5): 1171-1179. doi: 10.3969/j.issn.0258-2724.20220148

高速列车底部结构参数对气动噪声影响规律

doi: 10.3969/j.issn.0258-2724.20220148
基金项目: 国家自然科学基金(52002283, U1834201);上海市地面交通工具空气动力与热环境模拟重点实验室(23DZ2229029)
详细信息
    作者简介:

    陈羽(1986—),男,工程师,博士,研究方向为高速列车空气动力学与气动声学,E-mail:08_yu_chen@tongji.edu.cn

  • 中图分类号: U270.16

Influence of Underbody Parameters of High-Speed Trains on Aerodynamic Noise

  • 摘要:

    为更好地开展高速列车气动降噪设计,建立了高速列车头车第一组转向架区域的6参数模型,采用计算气动声学和拉丁超立方抽样实验所设计的方法,得到了13个参数化模型的远场气动噪声、转向架舱内湍流脉动功率级和声功率级,并分析了底部结构参数对远场和近场气动噪声的影响规律. 结果表明:底部结构参数对远场噪声影响范围为75.4~78.9 dB(A),裙板高度、排障器厚度、转向架舱后缘倒角和舱长度与远场噪声为负相关,舱前缘倒角、排障器前缘夹角与远场噪声为正相关,底部结构参数的变化主要影响中心频带315~1250 Hz间的噪声能量;排障器厚度和前缘夹角与远场噪声、舱内湍流脉动功率、声功率均为负相关;裙板高度和远场噪声、舱内湍流脉动功率级为负相关,与舱内声功率为正相关.

     

  • 图 1  高速列车模型

    Figure 1.  High-speed train model

    图 2  头车底部结构参数模型

    Figure 2.  Parameterization of underbody structure

    图 3  计算域及网格

    Figure 3.  Computational domian and grid

    图 4  风洞实验和远场测点

    Figure 4.  Wind tunnel experiment and far-field measuring points

    图 5  测点2的声压级频谱

    Figure 5.  Noise spectrum of point 2

    图 6  测点1~5示意

    Figure 6.  Schematic diagram of points 1−5

    图 7  测点1~5平均声压级

    Figure 7.  Mean sound pressure level of measureing points 1−5

    图 8  底部参数与远场噪声相关性系数

    Figure 8.  Correlation between underbody parameters and noise in the far field

    图 9  远场噪声1/3倍频程谱

    Figure 9.  1/3 octave band spectrum in the far field

    图 10  头车底部表面湍流脉动压力级

    Figure 10.  Surface turbulent fluctuating pressure levels at the bottom of the head car

    图 11  舱内湍流脉动总功率级

    Figure 11.  Total power level of turbulent fluctuation inside cavity

    图 12  各参数对舱内湍流脉动总功率级的相关系数

    Figure 12.  Correlation between underbody parameters and total power level of turbulent fluctuation inside cavity

    图 13  头车底部声压级云图

    Figure 13.  Sound pressure levels at the bottom of the head car

    图 14  舱内总声功率级

    Figure 14.  Total sound power level inside cavity

    图 15  各参数与舱内总声功率级的相关系数

    Figure 15.  Correlation between underbody parameters and total sound power level inside cavity

    表  1  参数变化范围

    Table  1.   Ranges of parameters

    参数变化范围
    l/mm495~605
    h1/mm0~100
    Rf/mm0~20
    Rr/mm0~20
    h2/mm15~50
    θ/(°)95~140
    下载: 导出CSV

    表  2  高速列车底部结构参数化实验设计

    Table  2.   Design of experiment table of high-speed train under body parameters

    样本点 l/mmh1/mmRf/mmRr/mmh2/mmθ/(°)
    原型535630028125
    1536645628127
    25349831040117
    351099131819136
    4596962164296
    560293111435113
    65788710320124
    7597841538101
    85038241140104
    94987961726110
    1059065181549112
    115613317122133
    125660191335116
    下载: 导出CSV

    表  3  网格敏感性验证

    Table  3.   Gird sensitivity verification

    序号网格/万y+ x+ z+ Cd偏差/%
    1410014504500.281−1.1
    2490013003000.283−0.4
    3880011501500.284
    下载: 导出CSV

    表  4  测点总声压级

    Table  4.   OASPL of measureing points dB(A)

    方法测点 1测点 2测点 3
    数值仿真78.578.480.6
    风洞试验78.178.778.6
    下载: 导出CSV
  • [1] 翟婉明,赵春发. 现代轨道交通工程科技前沿与挑战[J]. 西南交通大学学报,2016,51(2): 209-226. doi: 10.3969/j.issn.0258-2724.2016.02.001

    ZHAI Wanming, ZHAO Chunfa. Frontiers and challenges of sciences and technologies in modern railway engineering[J]. Journal of Southwest Jiaotong University, 2016, 51(2): 209-226. doi: 10.3969/j.issn.0258-2724.2016.02.001
    [2] 朱自未,李牧皛,成功,等. 高速列车噪声源声功率与速度的函数关系[J]. 西南交通大学学报,2020,55(2): 290-298. doi: 10.3969/j.issn.0258-2724.20180023

    ZHU Ziwei, LI Muxiao, CHENG Gong, et al. Functional relationships between sound Powers radiated from noise sources of high-speed train and its speed[J]. Journal of Southwest Jiaotong University, 2020, 55(2): 290-298. doi: 10.3969/j.issn.0258-2724.20180023
    [3] ZHANG J, XIAO X B, SHENG X Z, et al. An acoustic design procedure for controlling interior noise of high-speed trains[J]. Applied Acoustics, 2020, 168: 107419. doi: 10.1016/j.apacoust.2020.107419
    [4] HE B, JIN X S. Investigation into external noise of a high-speed train at different speeds[J]. Journal of Zhejiang University-Science A, 2014, 15: 1019-1033. doi: 10.1631/jzus.A1400307
    [5] 高阳,王毅刚,王金田,等. 声学风洞中的高速列车模型气动噪声试验研究[J]. 声学技术,2013,32(6): 506-510.

    GAO Yang, WANG Yigang, WANG Jintian, et al. Testing study of aerodynamic noise for high speed train model in aero-acoustic wind tunnel[J]. Technical Acoustics, 2013, 32(6): 506-510.
    [6] 张亚东,张继业,李田. 高速列车整车气动噪声声源特性分析及降噪研究[J]. 铁道学报,2016,38(7): 40-49. doi: 10.3969/j.issn.1001-8360.2016.07.006

    ZHANG Yadong, ZHANG Jiye, LI Tian. Research on aerodynamic noise source characterization and noise reduction of high-speed trains vehicle[J]. Journal of the China Railway Society, 2016, 38(7): 40-49. doi: 10.3969/j.issn.1001-8360.2016.07.006
    [7] LATORRE IGLESIAS E, THOMPSON D J, SMITH M, et al. Anechoic wind tunnel tests on high-speed train bogie aerodynamic noise[J]. International Journal of Rail Transportation, 2017, 5(2): 87-109. doi: 10.1080/23248378.2016.1274685
    [8] SUN Z X, ZHANG Y, YANG G W. Surrogate based optimization of aerodynamic noise for streamlined shape of high speed trains[J]. Applied Sciences, 2017, 7(2): 196-212. doi: 10.3390/app7020196
    [9] 张亮,张继业,李田,等. 超高速列车流线型头型多目标优化设计[J]. 机械工程学报,2017,53(2): 106-114. doi: 10.3901/JME.2017.02.106

    ZHANG Liang, ZHANG Jiye, LI Tian, et al. Multi-objective optimization design of the streamlined head shape of super high-speed trains[J]. Journal of Mechanical Engineering, 2017, 53(2): 106-114. doi: 10.3901/JME.2017.02.106
    [10] 安翼,莫晃锐,刘青泉. 高速列车头型长细比对气动噪声的影响[J]. 力学学报,2017,49(5): 985-996. doi: 10.6052/0459-1879-17-126

    AN Yi, MO Huangrui, LIU Qingquan. Study on the influence of the nose slenderness ratio of high-speed train on the aerodynamic noise[J]. Chinese Journal of Theoretical and Applied Mechanics, 2017, 49(5): 985-996. doi: 10.6052/0459-1879-17-126
    [11] ZHU J Y, HU Z W, THOMPSON D J. The flow and flow-induced noise behaviour of a simplified high-speed train bogie in the cavity with and without a fairing[J]. Proceedings of the Institution of Mechanical Engineers, Part F: Journal of Rail and Rapid Transit, 2018, 232(3): 759-773. doi: 10.1177/0954409717691619
    [12] 高阳,李启良,陈羽,等. 高速列车头型近场与远场噪声预测[J]. 同济大学学报(自然科学版),2019,47(1): 124-129.

    GAO Yang, LI Qiliang, CHEN Yu, et al. Prediction of near field and far field noise for high-speed train head shape[J]. Journal of Tongji University (Natural Science), 2019, 47(1): 124-129.
    [13] 田红旗. 中国高速轨道交通空气动力学研究进展及发展思考[J]. 中国工程科学,2015,17(4): 30-41.

    TIAN Hongqi. Development of research on aerodynamics of high-speed rails in China[J]. Strategic Study of CAE, 2015, 17(4): 30-41.
    [14] MCKAY M D, BECKMAN R J, CONOVER W J. A comparison of three methods for selecting values of input variables in the analysis of output from a computer code[J]. Technometrics, 2000, 42(1): 55-61. doi: 10.1080/00401706.2000.10485979
    [15] IMAN R L, HELTON J C, CAMPBELL J E. An approach to sensitivity analysis of computer models: part I—introduction, input variable selection and preliminary variable assessment[J]. Journal of Quality Technology, 1981, 13(3): 174-183. doi: 10.1080/00224065.1981.11978748
    [16] EWERT R, SCHRÖDER W. Acoustic perturbation equations based on flow decomposition via source filtering[J]. Journal of Computational Physics, 2003, 188(2): 365-398. doi: 10.1016/S0021-9991(03)00168-2
    [17] LECOQ D, PÉZERAT C, THOMAS J H, et al. Extraction of the acoustic component of a turbulent flow exciting a plate by inverting the vibration problem[J]. Journal of Sound and Vibration, 2014, 333(12): 2505-2519. doi: 10.1016/j.jsv.2014.02.003
  • 加载中
图(15) / 表(4)
计量
  • 文章访问数:  338
  • HTML全文浏览量:  154
  • PDF下载量:  37
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-03-08
  • 修回日期:  2022-05-23
  • 网络出版日期:  2023-05-12
  • 刊出日期:  2022-05-27

目录

    /

    返回文章
    返回