• ISSN 0258-2724
  • CN 51-1277/U
  • EI Compendex
  • Scopus 收录
  • 全国中文核心期刊
  • 中国科技论文统计源期刊
  • 中国科学引文数据库来源期刊

基于围岩变形失效的隧道结构可靠度设计方法

李天胜 何川 方砚兵 周子寒 包烨明 陈子全 白国峰

李天胜, 何川, 方砚兵, 周子寒, 包烨明, 陈子全, 白国峰. 基于围岩变形失效的隧道结构可靠度设计方法[J]. 西南交通大学学报, 2023, 58(3): 613-621. doi: 10.3969/j.issn.0258-2724.20220137
引用本文: 李天胜, 何川, 方砚兵, 周子寒, 包烨明, 陈子全, 白国峰. 基于围岩变形失效的隧道结构可靠度设计方法[J]. 西南交通大学学报, 2023, 58(3): 613-621. doi: 10.3969/j.issn.0258-2724.20220137
LI Tiansheng, HE Chuan, FANG Yanbing, ZHOU Zihan, BAO Yeming, CHEN Ziquan, BAI Guofeng. Reliability-Based Design Method of Tunnel Structures Based on Deformation Failure of Surrounding Rock[J]. Journal of Southwest Jiaotong University, 2023, 58(3): 613-621. doi: 10.3969/j.issn.0258-2724.20220137
Citation: LI Tiansheng, HE Chuan, FANG Yanbing, ZHOU Zihan, BAO Yeming, CHEN Ziquan, BAI Guofeng. Reliability-Based Design Method of Tunnel Structures Based on Deformation Failure of Surrounding Rock[J]. Journal of Southwest Jiaotong University, 2023, 58(3): 613-621. doi: 10.3969/j.issn.0258-2724.20220137

基于围岩变形失效的隧道结构可靠度设计方法

doi: 10.3969/j.issn.0258-2724.20220137
基金项目: 国家重点研发计划(2021YFB2600900);国家自然科学基金(52008351);四川省交通运输科技项目(2021-B-01)
详细信息
    作者简介:

    李天胜(1971—),男,博士研究生,研究方向为隧道与地下工程,E-mail:paper3121@163.com

    通讯作者:

    何川(1964—),男,教授,博导,研究方向为隧道与地下工程,E-mail:chuanhe21@163.com

  • 中图分类号: TU45

Reliability-Based Design Method of Tunnel Structures Based on Deformation Failure of Surrounding Rock

  • 摘要:

    为科学地处理隧道工程中由于材料属性和复杂地质环境等带来的不确定性,使支护设计更加安全合理,基于可靠度理论,提出一种实用隧道可靠度设计计算方法. 首先,基于可靠度指标的几何意义,结合Nataf变换和Cholesky分解等考虑参数相关性与非负性,建立约束在原始空间的最优化模型;其次,利用数值软件内嵌的优化函数在不需人为计算偏导数的情况下直接获得设计点;然后,引入重要抽样方法,在设计点处计算失效概率,形成兼顾收敛性和精度的实用可靠度计算方法;再次,通过高度非线性的数值算例和非圆坑道算例验证该方法的有效性和适应性;最后,基于围岩变形失效功能函数,采用本文方法进行隧道支护抗力设计计算. 算例分析结果表明:本文方法能够以较小代价获取设计点,最终结果和蒙特卡洛法结果相对误差小于1.0%,并且能够结合含交叉项响应面函数处理无解析功能函数的非圆坑道可靠度问题;本文方法能够获取准确的支护抗力设计值,与蒙特卡洛法结果相对误差小于0.5%;内摩擦角的敏感性比黏聚力和变形模量的大.

     

  • 图 1  可靠度指标几何意义

    Figure 1.  Geometric meaning of reliability index

    图 2  收敛情况

    Figure 2.  Convergences by different methods

    图 3  开挖横剖面(单位:m)

    Figure 3.  Transverse stratum profile of the excavation (unit:m)

    图 4  开挖断面(单位:cm)

    Figure 4.  Cross section of the excavation (unit:cm)

    图 5  数值模型及边界条件(单位:m)

    Figure 5.  Numerical model and its boundary conditions (unit:m)

    图 6  负相关系数及分布形态的影响

    Figure 6.  Impact of negative correlations and distribution types

    图 7  敏感性分析

    Figure 7.  Sensitive analysis

    表  1  抽样次数

    Table  1.   Sampling numbers

    Pf/%$ \beta $抽样方法N/次精度
    1.002.326 0直接抽样3.80 × 10410% (95%)
    重要抽样1.03 × 103
    0.103.090 0直接抽样3.84 × 105
    重要抽样1.34 × 103
    0.013.719 0直接抽样3.84 × 106
    重要抽样1.61 × 103
    下载: 导出CSV

    表  2  计算结果

    Table  2.   Calculation results

    方法Pf/%收敛情况相对误差/%
    蒙特卡洛法0.300收敛
    一次二阶矩法不收敛
    有限步长迭代法1.070收敛256.66
    表格算法1.070收敛256.66
    本文方法0.302收敛0.66
    下载: 导出CSV

    表  3  围岩统计特征值

    Table  3.   Statistical characteristics of surrounding rock

    类型c2φ2 E2
    均值 0.451 MPa30.85°1.704 GPa
    变异系数0.124 MPa0.076°0.109 GPa
    分布形态正态分布正态分布正态分布
    下载: 导出CSV

    表  4  抽样点及其计算结果

    Table  4.   Sampling points and results

    E2 /GPac2 /MPaφ2 /(°)ur /cmZ/cm
    1.8900.45130.8510.2941.846
    1.5180.45130.8512.364−0.224
    1.7040.50730.8510.7241.416
    1.7040.39530.8511.9410.199
    1.7040.45133.2110.3301.810
    1.7040.45128.4912.596−0.456
    1.7040.45130.8511.2290.911
    1.7040.39528.4913.744−1.604
    下载: 导出CSV

    表  5  计算结果

    Table  5.   Calculation results %

    方法Pf相对误差
    蒙特卡洛模拟法33.55
    表格算法30.3710.48
    本文方法33.580.09
    下载: 导出CSV

    表  6  基本随机变量统计特征

    Table  6.   Statistical characteristics of the basic random variables

    类型$c$${\varphi}$$E$
    均值0.23 MPa22.85°373 MPa
    标准差0.068 MPa1.310°48 MPa
    分布正态分布 正态分布正态分布
    下载: 导出CSV

    表  7  计算结果

    Table  7.   Calculation results

    方法Pf/%pi /MPa相对误差/%
    蒙特卡洛模拟法0.010.699 2
    表格算法0.010.687 51.70
    本文方法0.010.698 80.06
    下载: 导出CSV
  • [1] DUNCAN J M. Factors of safety and reliability in geotechnical engineering[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2000, 126(4): 307-316. doi: 10.1061/(ASCE)1090-0241(2000)126:4(307)
    [2] PHOON K K, KULHAWY F H, GRIGORIU M D. Development of a reliability-based design framework for transmission line structure foundations[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2003, 129(9): 798-806. doi: 10.1061/(ASCE)1090-0241(2003)129:9(798)
    [3] International Organization for Standardization. 2015 General principles on reliability of structures: ISO 2394[S]. Geneva: [s.n.], 2015.
    [4] European Committee for Standardization (CEN). Geotechnical design—part 1: general rules: EN 1997−1: 2004[S]. Brussels: [s.n.], 2004.
    [5] PAIKOWSKY S G, CANNIFF M C, LESNY K, et al. LRFD design and construction of shallow foundations for highway bridge structures[M]. Washington D. C.: National Academies Press, 2010.
    [6] 中国铁路总公司企业标准. 铁路隧道设计规范(极限状态法): Q/CR 9129—2018 [S]. 北京: 中国铁道出版社, 2019.
    [7] FENTON G A, GRIFFITHS D V, ZHANG X Y. Load and resistance factor design of shallow foundations against bearing failure[J]. Canadian Geotechnical Journal, 2008, 45(11): 1556-1571. doi: 10.1139/T08-061
    [8] SALGADO R, KIM D. Reliability analysis of load and resistance factor design of slopes[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2014, 140(1): 57-73. doi: 10.1061/(ASCE)GT.1943-5606.0000978
    [9] 赵万强,宋玉香,赵东平,等. 铁路隧道钢筋混凝土衬砌结构可靠度分析[J]. 铁道工程学报,2015,32(8): 81-86.

    ZHAO Wanqiang, SONG Yuxiang, ZHAO Dongping, et al. Reliability analysis of reinforced concrete lining structure for railway tunnel[J]. Journal of Railway Engineering Society, 2015, 32(8): 81-86.
    [10] 喻渝,赵东平,宋玉香,等. 铁路隧道衬砌结构分项系数的优化分析研究[J]. 铁道工程学报,2015,32(6): 57-61.

    YU Yu, ZHAO Dongping, SONG Yuxiang, et al. Analysis of partial coefficient optimization of lining structure in railway tunnel[J]. Journal of Railway Engineering Society, 2015, 32(6): 57-61.
    [11] FANG Y, SU Y. On the use of the global sensitivity analysis in the reliability-based design: insights from a tunnel support case[J]. Computers and Geotechnics, 2020, 117: 103280.1-103280.13.
    [12] 姬建,张哲铭,夏嘉诚,等. 基于逆可靠度分析的隧道开挖面极限支护压力优化设计[J]. 岩土工程学报,2021,43(10): 1825-1833.

    JI Jian, ZHANG Zheming, XIA Jiacheng, et al. Inverse reliability-based design of limit support pressure for tunnel face stability[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(10): 1825-1833.
    [13] HASOFER A M, LIND N C. Exact and invariant second-moment code format[J]. Journal of Engineering Mechanics Division, 1974, 100(1): 111-121. doi: 10.1061/JMCEA3.0001848
    [14] RACKWITZ R, FLESSLER B. Structural reliability under combined random load sequences[J]. Computers & Structures, 1978, 9(5): 489-494.
    [15] LIU P L, DER KIUREGHIAN A. Optimization algorithms for structural reliability[J]. Structural Safety, 1991, 9(3): 161-177. doi: 10.1016/0167-4730(91)90041-7
    [16] 贡金鑫. 结构可靠指标求解的一种新的迭代方法[J]. 计算结构力学及其应用,1995,12(3): 369-373.

    GONG Jinxin. A new algorithm for solving the structural reliability index[J]. Chinese Journal of Computational Mechanics, 1995, 12(3): 369-373.
    [17] ZHANG Y, KIUREGHIAN A D, Finite element reliability methods for inelastic structures[R]. Berkeley: University of California, Berkeley, 1997.
    [18] SANTOS S R, MATIOLI L C, BECK A T. New optimization algorithms for structural reliability analysis[J]. Computer Modeling in Engineering & Sciences (CMES), 2012, 83(1): 23-55.
    [19] LOW B K, TANG W H. Efficient spreadsheet algorithm for first-order reliability method[J]. Journal of Engineering Mechanics, 2007, 133(12): 1378-1387. doi: 10.1061/(ASCE)0733-9399(2007)133:12(1378)
    [20] 李晓军,陈雪琴,朱合华. 基于Spreadsheet法的盾构衬砌截面可靠度分析[J]. 岩土工程学报,2013,35(9): 1642-1649.

    LI Xiaojun, CHEN Xueqin, ZHU Hehua. Reliability analysis of shield lining sections using Spreadsheet method[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(9): 1642-1649.
    [21] 张道兵,杨小礼,朱川曲,等. 基于最大熵原理与最优化方法的隧道衬砌结构可靠度分析[J]. 中南大学学报(自然科学版),2012,43(2): 663-668.

    ZHANG Daobing, YANG Xiaoli, ZHU Chuanqu, et al. Structural reliability analysis of tunnel lining based on maximal entropy principle and optimization method[J]. Journal of Central South University (Science and Technology), 2012, 43(2): 663-668.
    [22] DER KIUREGHIAN A, LIU P L. Structural reliability under incomplete probability information[J]. Journal of Engineering Mechanics, 1986, 112(1): 85-104. doi: 10.1061/(ASCE)0733-9399(1986)112:1(85)
    [23] LIU P L, DER KIUREGHIAN A. Multivariate distribution models with prescribed marginals and covariances[J]. Probabilistic Engineering Mechanics, 1986, 1(2): 105-112. doi: 10.1016/0266-8920(86)90033-0
    [24] RUBINSTEIN R Y. Simulation and the Monte Carlo method[M]. Hoboken: John Wiley & Sons, Inc., 1981.
    [25] MEYERHOF G G. Development of geotechnical limit state design[J]. Canadian Geotechnical Journal, 1995, 32(1): 128-136. doi: 10.1139/t95-010
    [26] LÜ Q, SUN H Y, LOW B K. Reliability analysis of ground-support interaction in circular tunnels using the response surface method[J]. International Journal of Rock Mechanics and Mining Sciences, 2011, 48(8): 1329-1343. doi: 10.1016/j.ijrmms.2011.09.020
    [27] LI H Z, LOW B K. Reliability analysis of circular tunnel under hydrostatic stress field[J]. Computers and Geotechnics, 2010, 37(1/2): 50-58.
    [28] DUNCAN FAMA M E. Numerical modeling of yield zones in weak rocks[C]//Comprehensive Rock Engineering. Oxford: Pergamon Press, 1993: 49-75.
    [29] HOEK E. Reliability of Hoek-Brown estimates of rock mass properties and their impact on design[J]. International Journal of Rock Mechanics and Mining Sciences, 1998, 35(1): 63-68. doi: 10.1016/S0148-9062(97)00314-8
    [30] MARTIN C D. Seventeenth Canadian geotechnical colloquium: the effect of cohesion loss and stress path on brittle rock strength[J]. Canadian Geotechnical Journal, 1997, 34(5): 698-725. doi: 10.1139/t97-030
  • 加载中
图(7) / 表(7)
计量
  • 文章访问数:  358
  • HTML全文浏览量:  109
  • PDF下载量:  40
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-02-23
  • 修回日期:  2022-07-01
  • 网络出版日期:  2023-05-15
  • 刊出日期:  2022-07-13

目录

    /

    返回文章
    返回