• ISSN 0258-2724
  • CN 51-1277/U
  • EI Compendex
  • Scopus 收录
  • 全国中文核心期刊
  • 中国科技论文统计源期刊
  • 中国科学引文数据库来源期刊

拉应力作用下早龄期混凝土相对湿度响应试验研究

赵海涛 丁健 杨果 相宇 徐文 陈育志

赵海涛, 丁健, 杨果, 相宇, 徐文, 陈育志. 拉应力作用下早龄期混凝土相对湿度响应试验研究[J]. 西南交通大学学报, 2024, 59(5): 1104-1112. doi: 10.3969/j.issn.0258-2724.20220134
引用本文: 赵海涛, 丁健, 杨果, 相宇, 徐文, 陈育志. 拉应力作用下早龄期混凝土相对湿度响应试验研究[J]. 西南交通大学学报, 2024, 59(5): 1104-1112. doi: 10.3969/j.issn.0258-2724.20220134
ZHAO Haitao, DING Jian, YANG Guo, XIANG Yu, XU Wen, CHEN Yuzhi. Experimental Investigation of Relative Humidity Response in Early-Age Concrete Under Tensile Stress[J]. Journal of Southwest Jiaotong University, 2024, 59(5): 1104-1112. doi: 10.3969/j.issn.0258-2724.20220134
Citation: ZHAO Haitao, DING Jian, YANG Guo, XIANG Yu, XU Wen, CHEN Yuzhi. Experimental Investigation of Relative Humidity Response in Early-Age Concrete Under Tensile Stress[J]. Journal of Southwest Jiaotong University, 2024, 59(5): 1104-1112. doi: 10.3969/j.issn.0258-2724.20220134

拉应力作用下早龄期混凝土相对湿度响应试验研究

doi: 10.3969/j.issn.0258-2724.20220134
基金项目: 国家重点研发计划(2021YFF0500800);国家自然科学基金项目(U1965105,51878245)
详细信息
    作者简介:

    赵海涛(1978—),男,教授,研究方向为混凝土早龄期性能与裂缝控制,E-mail:zhaoht@hhu.edu.cn

  • 中图分类号: TU528.1

Experimental Investigation of Relative Humidity Response in Early-Age Concrete Under Tensile Stress

  • 摘要:

    为系统研究早龄期混凝土内部相对湿度对不同水平拉应力的响应规律,设计恒定轴拉下混凝土内部相对湿度测试方法,试验研究了不同拉应力下的相对湿度响应规律,并基于试验结果和理论分析,给出早龄期混凝土单面干燥条件下相对湿度与拉应力的线性模型. 研究结果表明:拉应力施加会造成混凝土内部相对湿度瞬时下降,当拉应力从0.8 MPa增加到3.2 MPa时,混凝土深度分别为50、75、100 mm处的相对湿度变化值从0.5%、0.4%和0.3%增加到0.8%、0.7%和0.6%;随着拉应力逐渐增大,相对湿度下降值逐渐增大;在相同拉应力下,距离混凝土暴露面近的相对湿度对拉应力的响应更为显著;拉应力持荷状态下相对湿度会逐渐恢复,恢复时间约2.5 h,在压应力持荷状态下也出现了类似现象,恢复时间约20.0 h,拉应力持荷状态下相对湿度恢复时间更短.

     

  • 图 1  相对湿度测点位置及端部丝杆对中措施

    Figure 1.  Location of relative humidity measuring points and alignment method of end screws

    图 2  相对湿度测量

    Figure 2.  Relative humidity measurement

    图 3  拉应力状态下的相对湿度测量

    Figure 3.  Relative humidity measurement under tensile stress state

    图 4  不同拉应力水平下相对湿度曲线

    Figure 4.  Relative humidity curves under different tensile stress levels

    图 5  拉应力状态下水分重分布

    Figure 5.  Water redistribution under tensile stress state

    图 6  2.4 MPa拉应力下相对湿度和变形对比曲线

    Figure 6.  Comparison curves of relative humidity and deformation under tensile stress of 2.4 MPa

    图 7  压应力状态下的相对湿度曲线

    Figure 7.  Relative humidity curves under compressive stress state

    图 8  相对湿度与饱和度之间的关系

    Figure 8.  Relationships between relative humidity and saturation

    图 9  动弹性模量和静弹性模量与龄期的关系

    Figure 9.  Relationships between age and dynamic and static elastic moduli

    图 10  由相对湿度变化以及静、动弹性模量差产生的应变差值

    Figure 10.  Strain difference caused by static and dynamic modulus difference and relative humidity variation

    图 11  相对湿度变化引起应变差值拟合结果

    Figure 11.  Fitting results of strain difference caused by relative humidity variation

    图 12  ωd的线性回归

    Figure 12.  Linear regression of ω and d

    表  1  混凝土配合比

    Table  1.   Concrete mix proportion kg/m3

    材料名称水泥细骨料粗骨料减水剂
    配合比533.00160.00597.001110.004.33
    下载: 导出CSV

    表  2  加载试验方案

    Table  2.   Loading test scheme

    工况拉(压)应力/
    抗拉(压)强度/%
    施加拉(压)应力/MPa7 d 抗拉(压)强度/MPa截面面积/m2施加荷载/kN备注
    T1200.83.950.0187515拉力
    T2401.63.950.0187530拉力
    T3602.43.950.0187545拉力
    T4803.23.950.0187560拉力
    C12012.863.70.01875240压力
    下载: 导出CSV

    表  3  拉应力加载前后相对湿度和饱和度

    Table  3.   Relative humidity and saturation before and after tensile stress loading

    测点0.8 MPa1.6 MPa2.4 MPa3.2 MPa
    H1/% (S1H2/% (S2H1/% (S1H2/% (S2H1/% (S1H2/% (S2H1/% (S1H2 /% (S2
    D10086.6
    0.7941
    86.3
    0.7914
    86.2
    0.7905
    85.8
    0.7870
    86.0
    0.7887
    85.5
    0.7844
    86.3
    0.7914
    85.7
    0.7861
    D7584.9
    0.7794
    84.5
    0.7762
    84.3
    0.7746
    83.8
    0.7708
    84.5
    0.7762
    83.9
    0.7715
    84.6
    0.7770
    83.9
    0.7715
    D5083.7
    0.7700
    83.2
    0.7663
    83.0
    0.7649
    82.4
    0.7607
    83.2
    0.7663
    82.5
    0.7614
    83.3
    0.7671
    82.5
    0.7614
    下载: 导出CSV
  • [1] 王晓莹. 早龄期高性能约束砂浆环开裂机制数值模拟[D]. 重庆: 重庆大学, 2015.
    [2] 杨荣山,李莹,许钊荣,等. 多雨地区双块式无砟轨道湿态混凝土力学性能[J]. 西南交通大学学报,2022,57(4): 840-847. doi: 10.3969/j.issn.0258-2724.2017.01.008

    YANG Rongshan, LI Ying, XU Zhaorong, et al. Mechanical properties of wet concrete inside double-block ballastless tracks in rainy areas[J]. Journal of Southwest Jiaotong University, 2022, 57(4): 840-847. doi: 10.3969/j.issn.0258-2724.2017.01.008
    [3] LIU J P, TIAN Q, WANG Y, et al. Evaluation method and mitigation strategies for shrinkage cracking of modern concrete[J]. Engineering, 2021, 7(3): 348-357. doi: 10.1016/j.eng.2021.01.006
    [4] ZHAO H T, JIANG K D, YANG R, et al. Experimental and theoretical analysis on coupled effect of hydration, temperature and humidity in early-age cement-based materials[J]. International Journal of Heat and Mass Transfer, 2020, 146: 118784.1-118784.9.
    [5] POWERS T C. The thermodynamics of volume change and creep[J]. Matériaux et Construction, 1968, 1(6): 487-507.
    [6] 杜明月. 基于微孔结构演化的早龄期混凝土热-湿-力耦合模型研究[D]. 杭州: 浙江大学, 2015.
    [7] ZHAO H T, JIANG K D, HONG B, et al. Experimental and numerical analysis on coupled hygro-thermo-chemo-mechanical effect in early-age concrete[J]. Journal of Materials in Civil Engineering, 2021, 33(5): 04021064.1-04021064.12.
    [8] WYRZYKOWSKI M, LURA P. RH dependence upon applied load: experimental study on water redistribution in the microstructure at loading[C]//Proceedings of the 10th International Conference on Mechanics and Physics of Creep, Shrinkage and Durability of Concrete and Concrete Structures. Vienna: American Society of Civil Engineers, 2015: 339-347.
    [9] 国家质量监督检验检疫总局, 中国国家标准化管理委员会. 通用硅酸盐水泥: GB 175—2007[S]. 北京: 中国标准出版社, 2007.
    [10] 中华人民共和国住房和城乡建设部. 混凝土物理力学性能试验方法标准: GB/T 50081—2019[S]. 北京: 中国建筑工业, 2019.
    [11] KOMLOS̆ K, POPOVICS S, NÜRNBERGEROVÁ T, et al. Ultrasonic pulse velocity test of concrete properties as specified in various standards[J]. Cement and Concrete Composites, 1996, 18(5): 357-364. doi: 10.1016/0958-9465(96)00026-1
    [12] 国家能源局. 水工混凝土试验规程: DL/T 5150—2017[S]. 北京: 中国电力出版社, 2018.
    [13] ZHANG J, HOU D W, SHE W. Experimental study on the relationship between shrinkage and interior humidity of concrete at early age[J]. Magazine of Concrete Research, 2010, 62(3): 191-199. doi: 10.1680/macr.2010.62.3.191
    [14] DERJAGUIN B. A theory of capillary condensation in the pores of sorbents and of other capillary phenomena taking into account the disjoining action of polymolecular liquid films[J]. Progress in Surface Science, 1992, 40: 46-61. doi: 10.1016/0079-6816(92)90032-D
    [15] BROUWERS H J H. The work of powers and brownyard revisited: Part 1[J]. Cement and Concrete Research, 2004, 34: 1697-1716. doi: 10.1016/j.cemconres.2004.05.031
    [16] DELSAUTE B, BOULAY C, STÉPHANIE S. Creep testing of concrete since setting time by means of permanent and repeated minute-long loadings[J]. Cement and Concrete Composites, 2016, 73: 75-88. doi: 10.1016/j.cemconcomp.2016.07.005
    [17] LIU C, LIU H W, XIAO J Z, et al. Effect of old mortar pore structure on relative humidity response of recycled aggregate concrete[J]. Construction and Building Materials, 2020, 247: 118600.1-118600.10.
    [18] WYRZYKOWSKI M, LURA P. The effect of external load on internal relative humidity in concrete[J]. Cement and Concrete Research, 2014, 65: 58-63. doi: 10.1016/j.cemconres.2014.07.011
    [19] MACKENZIE J K. The elastic constants of a solid containing spherical holes[J]. Proceedings of the Physical Society. Section B, 1950, 63(1): 2-11. doi: 10.1088/0370-1301/63/1/302
    [20] BENTZ D P, GARBOCZI E J, QUENARD D A. Modelling drying shrinkage in reconstructed porous materials: application to porous Vycor glass[J]. Modelling and Simulation in Materials Science and Engineering, 1998, 6(3): 211-236. doi: 10.1088/0965-0393/6/3/002
    [21] 周航. 自密实自养护混凝土研制及性能试验研究[D]. 重庆: 重庆大学, 2016.
    [22] VLAHINIĆ I, JENNINGS H M, THOMAS J J. A constitutive model for drying of a partially saturated porous material[J]. Mechanics of Materials, 2009, 41(3): 319-328.
    [23] LURA P, JENSEN O M, BREUGEL K V. Autogenous shrinkage in high-performance cement paste: an evaluation of basic mechanisms[J]. Cement and Concrete Research, 2003, 33(2): 223-232.
    [24] NORLING M K. A model on self-desiccation in high-performance concrete[C]//In: self-desiccation and its importance in concrete technology, proceedings of the international research seminar. Sweden: [s.n.], 1997: 141-157.
    [25] PANTAZOPOULOU S J, MILLS R H. Microstructural aspects of the mechanical response of plain concrete[J]. ACI Materials Journal, 1995, 92: 605-616.
    [26] ZHOU C S, CHEN W, WANG W, et al. Indirect assessment of hydraulic diffusivity and permeability for unsaturated cement-based material from sorptivity[J]. Cement and Concrete Research, 2016, 82: 117-129. doi: 10.1016/j.cemconres.2016.01.002
    [27] SHKOLNIK I E. Effect of nonlinear response of concrete on its elastic modulus and strength[J]. Cement and Concrete Composites, 2005, 27(7/8): 747-757.
    [28] 张子明,周红军,殷波. 基于等效时间的混凝土徐变[J]. 河海大学学报(自然科学版),2005,33(2): 173-176.

    ZHANG Ziming, ZHOU Hongju, YIN Bo. Equivalent time based concrete creep[J]. Journal of Hohai University (Natural Sciences), 2005, 33(2): 173-176.
    [29] 周济,陈宗平,唐际宇,等. 一年龄期内超高泵送SCC力学性能时变研究[J]. 西南交通大学学报,2022,57(6): 1175-1183. doi: 10.3969/j.issn.0258-2724.20200746

    ZHOU Ji, CHEN Zongping, TANG Jiyu, et al. Time variation of mechanical properties of ultra-high pumped self-compacting concrete within one year of age[J]. Journal of Southwest Jiaotong University, 2022, 57(6): 1175-1183. doi: 10.3969/j.issn.0258-2724.20200746
    [30] GRASLEY Z C, SCHERER G W, LANGE D A, et al. Dynamic pressurization method for measuring permeability and modulus: Ⅱ. cementitious materials[J]. Materials and Structures, 2007, 40(7): 711-721. doi: 10.1617/s11527-006-9184-y
  • 加载中
图(12) / 表(3)
计量
  • 文章访问数:  269
  • HTML全文浏览量:  90
  • PDF下载量:  41
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-02-23
  • 修回日期:  2022-07-05
  • 网络出版日期:  2023-11-17
  • 刊出日期:  2022-08-29

目录

    /

    返回文章
    返回