Experimental Investigation of Relative Humidity Response in Early-Age Concrete Under Tensile Stress
-
摘要:
为系统研究早龄期混凝土内部相对湿度对不同水平拉应力的响应规律,设计恒定轴拉下混凝土内部相对湿度测试方法,试验研究了不同拉应力下的相对湿度响应规律,并基于试验结果和理论分析,给出早龄期混凝土单面干燥条件下相对湿度与拉应力的线性模型. 研究结果表明:拉应力施加会造成混凝土内部相对湿度瞬时下降,当拉应力从0.8 MPa增加到3.2 MPa时,混凝土深度分别为50、75、100 mm处的相对湿度变化值从0.5%、0.4%和0.3%增加到0.8%、0.7%和0.6%;随着拉应力逐渐增大,相对湿度下降值逐渐增大;在相同拉应力下,距离混凝土暴露面近的相对湿度对拉应力的响应更为显著;拉应力持荷状态下相对湿度会逐渐恢复,恢复时间约2.5 h,在压应力持荷状态下也出现了类似现象,恢复时间约20.0 h,拉应力持荷状态下相对湿度恢复时间更短.
Abstract:In order to systematically investigate the response law of the internal relative humidity of concrete at an early age to different tensile stress levels, a test method of the internal relative humidity of the concrete under constant axial tension was developed in this paper, and the response law of the relative humidity under different tensile stresses was studied experimentally. According to the experimental results and theoretical analysis, a linear model of the relative humidity and tensile stress of early-age concrete under one-side drying conditions was presented. The results show that the tensile stress causes the instantaneous decrease in the internal relative humidity of the concrete. When the tensile stress increases from 0.8 MPa to 3.2 MPa, the relative humidity change at the depth of 50, 75, and 100 mm of the concrete increases from 0.5%, 0.4%, and 0.3% to 0.8%, 0.7%, and 0.6%, respectively. At the same time, with the increase in tensile stress, the decrease in the relative humidity gradually increases. Under the same tensile stress, the response of relative humidity of the concrete, close to the exposed surface, to tensile stress which is is more obvious. The relative humidity gradually recovers during the tensile stress loading, and the time is about 2.5 h. A similar phenomenon also occurs during the compressive stress loading, and the time is about 20.0 h. Therefore, the relative humidity recovery time is shorter during the tensile stress loading.
-
Key words:
- early age /
- concrete /
- relative humidity /
- tensile stress /
- linear model
-
表 1 混凝土配合比
Table 1. Concrete mix proportion
kg/m3 材料名称 水泥 水 细骨料 粗骨料 减水剂 配合比 533.00 160.00 597.00 1110.00 4.33 表 2 加载试验方案
Table 2. Loading test scheme
工况 拉(压)应力/
抗拉(压)强度/%施加拉(压)应力/MPa 7 d 抗拉(压)强度/MPa 截面面积/m2 施加荷载/kN 备注 T1 20 0.8 3.95 0.01875 15 拉力 T2 40 1.6 3.95 0.01875 30 拉力 T3 60 2.4 3.95 0.01875 45 拉力 T4 80 3.2 3.95 0.01875 60 拉力 C1 20 12.8 63.7 0.01875 240 压力 表 3 拉应力加载前后相对湿度和饱和度
Table 3. Relative humidity and saturation before and after tensile stress loading
测点 0.8 MPa 1.6 MPa 2.4 MPa 3.2 MPa H1/% (S1) H2/% (S2) H1/% (S1) H2/% (S2) H1/% (S1) H2/% (S2) H1/% (S1) H2 /% (S2) D100 86.6
(0.7941 )86.3
(0.7914 )86.2
(0.7905 )85.8
(0.7870 )86.0
(0.7887 )85.5
(0.7844 )86.3
(0.7914 )85.7
(0.7861 )D75 84.9
(0.7794 )84.5
(0.7762 )84.3
(0.7746 )83.8
(0.7708 )84.5
(0.7762 )83.9
(0.7715 )84.6
(0.7770 )83.9
(0.7715 )D50 83.7
(0.7700 )83.2
(0.7663 )83.0
(0.7649 )82.4
(0.7607 )83.2
(0.7663 )82.5
(0.7614 )83.3
(0.7671 )82.5
(0.7614 ) -
[1] 王晓莹. 早龄期高性能约束砂浆环开裂机制数值模拟[D]. 重庆: 重庆大学, 2015. [2] 杨荣山,李莹,许钊荣,等. 多雨地区双块式无砟轨道湿态混凝土力学性能[J]. 西南交通大学学报,2022,57(4): 840-847. doi: 10.3969/j.issn.0258-2724.2017.01.008YANG Rongshan, LI Ying, XU Zhaorong, et al. Mechanical properties of wet concrete inside double-block ballastless tracks in rainy areas[J]. Journal of Southwest Jiaotong University, 2022, 57(4): 840-847. doi: 10.3969/j.issn.0258-2724.2017.01.008 [3] LIU J P, TIAN Q, WANG Y, et al. Evaluation method and mitigation strategies for shrinkage cracking of modern concrete[J]. Engineering, 2021, 7(3): 348-357. doi: 10.1016/j.eng.2021.01.006 [4] ZHAO H T, JIANG K D, YANG R, et al. Experimental and theoretical analysis on coupled effect of hydration, temperature and humidity in early-age cement-based materials[J]. International Journal of Heat and Mass Transfer, 2020, 146: 118784.1-118784.9. [5] POWERS T C. The thermodynamics of volume change and creep[J]. Matériaux et Construction, 1968, 1(6): 487-507. [6] 杜明月. 基于微孔结构演化的早龄期混凝土热-湿-力耦合模型研究[D]. 杭州: 浙江大学, 2015. [7] ZHAO H T, JIANG K D, HONG B, et al. Experimental and numerical analysis on coupled hygro-thermo-chemo-mechanical effect in early-age concrete[J]. Journal of Materials in Civil Engineering, 2021, 33(5): 04021064.1-04021064.12. [8] WYRZYKOWSKI M, LURA P. RH dependence upon applied load: experimental study on water redistribution in the microstructure at loading[C]//Proceedings of the 10th International Conference on Mechanics and Physics of Creep, Shrinkage and Durability of Concrete and Concrete Structures. Vienna: American Society of Civil Engineers, 2015: 339-347. [9] 国家质量监督检验检疫总局, 中国国家标准化管理委员会. 通用硅酸盐水泥: GB 175—2007[S]. 北京: 中国标准出版社, 2007. [10] 中华人民共和国住房和城乡建设部. 混凝土物理力学性能试验方法标准: GB/T 50081—2019[S]. 北京: 中国建筑工业, 2019. [11] KOMLOS̆ K, POPOVICS S, NÜRNBERGEROVÁ T, et al. Ultrasonic pulse velocity test of concrete properties as specified in various standards[J]. Cement and Concrete Composites, 1996, 18(5): 357-364. doi: 10.1016/0958-9465(96)00026-1 [12] 国家能源局. 水工混凝土试验规程: DL/T 5150—2017[S]. 北京: 中国电力出版社, 2018. [13] ZHANG J, HOU D W, SHE W. Experimental study on the relationship between shrinkage and interior humidity of concrete at early age[J]. Magazine of Concrete Research, 2010, 62(3): 191-199. doi: 10.1680/macr.2010.62.3.191 [14] DERJAGUIN B. A theory of capillary condensation in the pores of sorbents and of other capillary phenomena taking into account the disjoining action of polymolecular liquid films[J]. Progress in Surface Science, 1992, 40: 46-61. doi: 10.1016/0079-6816(92)90032-D [15] BROUWERS H J H. The work of powers and brownyard revisited: Part 1[J]. Cement and Concrete Research, 2004, 34: 1697-1716. doi: 10.1016/j.cemconres.2004.05.031 [16] DELSAUTE B, BOULAY C, STÉPHANIE S. Creep testing of concrete since setting time by means of permanent and repeated minute-long loadings[J]. Cement and Concrete Composites, 2016, 73: 75-88. doi: 10.1016/j.cemconcomp.2016.07.005 [17] LIU C, LIU H W, XIAO J Z, et al. Effect of old mortar pore structure on relative humidity response of recycled aggregate concrete[J]. Construction and Building Materials, 2020, 247: 118600.1-118600.10. [18] WYRZYKOWSKI M, LURA P. The effect of external load on internal relative humidity in concrete[J]. Cement and Concrete Research, 2014, 65: 58-63. doi: 10.1016/j.cemconres.2014.07.011 [19] MACKENZIE J K. The elastic constants of a solid containing spherical holes[J]. Proceedings of the Physical Society. Section B, 1950, 63(1): 2-11. doi: 10.1088/0370-1301/63/1/302 [20] BENTZ D P, GARBOCZI E J, QUENARD D A. Modelling drying shrinkage in reconstructed porous materials: application to porous Vycor glass[J]. Modelling and Simulation in Materials Science and Engineering, 1998, 6(3): 211-236. doi: 10.1088/0965-0393/6/3/002 [21] 周航. 自密实自养护混凝土研制及性能试验研究[D]. 重庆: 重庆大学, 2016. [22] VLAHINIĆ I, JENNINGS H M, THOMAS J J. A constitutive model for drying of a partially saturated porous material[J]. Mechanics of Materials, 2009, 41(3): 319-328. [23] LURA P, JENSEN O M, BREUGEL K V. Autogenous shrinkage in high-performance cement paste: an evaluation of basic mechanisms[J]. Cement and Concrete Research, 2003, 33(2): 223-232. [24] NORLING M K. A model on self-desiccation in high-performance concrete[C]//In: self-desiccation and its importance in concrete technology, proceedings of the international research seminar. Sweden: [s.n.], 1997: 141-157. [25] PANTAZOPOULOU S J, MILLS R H. Microstructural aspects of the mechanical response of plain concrete[J]. ACI Materials Journal, 1995, 92: 605-616. [26] ZHOU C S, CHEN W, WANG W, et al. Indirect assessment of hydraulic diffusivity and permeability for unsaturated cement-based material from sorptivity[J]. Cement and Concrete Research, 2016, 82: 117-129. doi: 10.1016/j.cemconres.2016.01.002 [27] SHKOLNIK I E. Effect of nonlinear response of concrete on its elastic modulus and strength[J]. Cement and Concrete Composites, 2005, 27(7/8): 747-757. [28] 张子明,周红军,殷波. 基于等效时间的混凝土徐变[J]. 河海大学学报(自然科学版),2005,33(2): 173-176.ZHANG Ziming, ZHOU Hongju, YIN Bo. Equivalent time based concrete creep[J]. Journal of Hohai University (Natural Sciences), 2005, 33(2): 173-176. [29] 周济,陈宗平,唐际宇,等. 一年龄期内超高泵送SCC力学性能时变研究[J]. 西南交通大学学报,2022,57(6): 1175-1183. doi: 10.3969/j.issn.0258-2724.20200746ZHOU Ji, CHEN Zongping, TANG Jiyu, et al. Time variation of mechanical properties of ultra-high pumped self-compacting concrete within one year of age[J]. Journal of Southwest Jiaotong University, 2022, 57(6): 1175-1183. doi: 10.3969/j.issn.0258-2724.20200746 [30] GRASLEY Z C, SCHERER G W, LANGE D A, et al. Dynamic pressurization method for measuring permeability and modulus: Ⅱ. cementitious materials[J]. Materials and Structures, 2007, 40(7): 711-721. doi: 10.1617/s11527-006-9184-y