• ISSN 0258-2724
  • CN 51-1277/U
  • EI Compendex
  • Scopus 收录
  • 全国中文核心期刊
  • 中国科技论文统计源期刊
  • 中国科学引文数据库来源期刊

新型超导能量转换/存储装置原理及应用展望

杨天慧 李文鑫 信赢

杨天慧, 李文鑫, 信赢. 新型超导能量转换/存储装置原理及应用展望[J]. 西南交通大学学报, 2023, 58(4): 913-921. doi: 10.3969/j.issn.0258-2724.20220125
引用本文: 杨天慧, 李文鑫, 信赢. 新型超导能量转换/存储装置原理及应用展望[J]. 西南交通大学学报, 2023, 58(4): 913-921. doi: 10.3969/j.issn.0258-2724.20220125
YANG Tianhui, LI Wenxin, XIN Ying. Principle and Application Prospective of Novel Superconducting Energy Conversion/Storage Device[J]. Journal of Southwest Jiaotong University, 2023, 58(4): 913-921. doi: 10.3969/j.issn.0258-2724.20220125
Citation: YANG Tianhui, LI Wenxin, XIN Ying. Principle and Application Prospective of Novel Superconducting Energy Conversion/Storage Device[J]. Journal of Southwest Jiaotong University, 2023, 58(4): 913-921. doi: 10.3969/j.issn.0258-2724.20220125

新型超导能量转换/存储装置原理及应用展望

doi: 10.3969/j.issn.0258-2724.20220125
基金项目: 国家重点研发计划(2018YFB0904400);天津市研究生科研创新项目(2021YJSB157)
详细信息
    作者简介:

    杨天慧(1994—),女,博士研究生,研究方向为超导电工应用,E-mail:yang_tianhui@tju.edu.cn

    通讯作者:

    信赢(1953—),男,教授,博士,研究方向为超导电工应用,E-mail:yingxin@tju.edu.cn

  • 中图分类号: U260.359;TK02;TM12

Principle and Application Prospective of Novel Superconducting Energy Conversion/Storage Device

  • 摘要:

    基于新发现的永磁体与超导线圈之间的相互作用规律,提出了利用永磁体与闭合超导线圈构成新型短时能量转换/存储装置. 通过在不同永磁体运动路径和运行速度时进行的多组实验,测量和分析了永磁体与闭合超导线圈相互作用过程中永磁体处在不同位置时的相互作用力和超导线圈内电流,验证所提装置原理的可行性并掌握其功能规律;进一步测量在静止状态时超导线圈中电流随时间的衰减情况,得到该装置的损耗特征. 研究结果显示:该装置可在无需附加发电机/电动机条件下实现机械能→电磁能→机械能转换,能量效率达到9成以上. 该新型超导能量转换/存储装置在城市轨道车辆制动能量回收再利用和航母舰载机辅助电磁弹射等领域具有广泛的应用前景.

     

  • 图 1  永磁体与超导线圈相互作用原理及坐标示意

    Figure 1.  Interaction principle and coordinate diagram of permanent magnet and superconducting coil

    图 2  实验所用Bi-2223超导线圈及杜瓦

    Figure 2.  Bi-2223 superconducting coil and dewar in experiment

    图 3  实验装置

    Figure 3.  Experimental devices

    图 4  永磁体与Bi-2223超导线圈构成的能量转换/存储装置储能—释能实验结果

    Figure 4.  Experimental results of energy conversion/storage device composed of permanent magnet and Bi-2223 superconducting coil

    图 5  永磁体与Gd-123超导线圈构成的能量转换/存储装置储能—释能实验结果

    Figure 5.  Experimental results of energy conversion/storage device composed of permanent magnet and Gd-123 superconducting coil

    图 6  永磁体在两种不同移动路径条件下与Bi-2223线圈相互作用力的比较

    Figure 6.  Comparison of forces between permanent magnet and Bi-2223 superconducting coil under two different moving paths

    图 7  永磁体停留在平衡位置190 s内超导线圈中电流衰减曲线

    Figure 7.  Current attenuation curve in superconducting coil when permanent magnet stays in equilibrium position for 190 s

    图 8  永磁体停留在平衡位置5 min内超导线圈(焊点优化后)电流衰减曲线

    Figure 8.  Current attenuation curve of superconducting coil (after solder joint optimization) within 5 minutes when permanent magnet stays in equilibrium position

    图 9  实验所用高温超导绕组

    Figure 9.  High-temperature superconducting winding in experiment

    图 10  新型超导能量转换/存储装置用于车辆再生制动时的一种可行方案示意

    Figure 10.  Schematic of feasible scheme for novel super conducting energy conversion/storage device used in vehicle regenerative braking

    图 11  新型超导能量转换/存储装置用于舰载机辅助弹射时的一种可行方案示意

    Figure 11.  Schematic of feasible scheme of novel super conducting energy conversion/storage device used in electromagnetic aircraft ejection

    表  1  实验所用超导线圈参数

    Table  1.   Superconducting coil parameters in experiment

    超导线圈 带材临界电流/A@K 线圈数/匝 线圈内径/mm 线圈外径/mm 线圈高度/mm 线圈电感测量值/µH
    Bi-2223 159@77 30 60 67 8.8 114
    Gd-123 140@77 30 60 73 10 115
    下载: 导出CSV
  • [1] HUGGINS R A. Energy storage: fundamentals, materials and applications[M]. 2nd Edition. Cham: Springer , 2015.
    [2] 吴皓文,王军,龚迎莉,等. 储能技术发展现状及应用前景分析[J]. 电力学报,2021,36(5): 434-443. doi: 10.13357/j.dlxb.2021.052

    WU Haowen, WANG Jun, GONG Yingli, et al. Development status and application prospect analysis of energy storage technology[J]. Journal of Electric Power, 2021, 36(5): 434-443. doi: 10.13357/j.dlxb.2021.052
    [3] BUCKLES W, HASSENZAHL W V. Superconducting magnetic energy storage[J]. IEEE Power Engineering Review, 2000, 20(5): 16-20. doi: 10.1109/39.841345
    [4] TIXADOR P. Superconducting magnetic energy storage: status and perspective[C]//IEEE CSC & ESAS European Superconductivity News Forum. [S.l.]: IEEE, 2008: 1-14.
    [5] MUKHERJEE P, RAO V V. Superconducting magnetic energy storage for stabilizing grid integrated with wind power generation systems[J]. Journal of Modern Power Systems and Clean Energy, 2019, 7(2): 400-411. doi: 10.1007/s40565-018-0460-y
    [6] 郭文勇,张京业,张志丰,等. 超导储能系统的研究现状及应用前景[J]. 科技导报,2016,34(23): 68-80.

    GUO Wenyong, ZHANG Jingye, ZHANG Zhifeng, et al. Current research status and application prospect of SMES[J]. Science & Technology Review, 2016, 34(23): 68-80.
    [7] 邱傅杰,徐克西,盛培龙. 小型飞轮储能系统高温超导磁悬浮轴承[J]. 电工技术学报,2014,29(1): 181-186. doi: 10.3969/j.issn.1000-6753.2014.01.025

    QIU Fujie, XU Kexi, SHENG Peilong. Small-scale flywheel energy storage system equipped with high temperature superconducting magnetic bearing[J]. Transactions of China Electrotechnical Society, 2014, 29(1): 181-186. doi: 10.3969/j.issn.1000-6753.2014.01.025
    [8] 李万杰,张国民,王新文,等. 飞轮储能系统用超导电磁混合磁悬浮轴承设计[J]. 电工技术学报,2020,35(增1): 10-18. doi: 10.19595/j.cnki.1000-6753.tces.l80394

    LI Wanjie, ZHANG Guomin, WANG Xinwen, et al. Integration design of high-temperature superconducting bearing and electromagnetic thrust bearing for flywheel energy storage system[J]. Transactions of China Electrotechnical Society, 2020, 35(S1): 10-18. doi: 10.19595/j.cnki.1000-6753.tces.l80394
    [9] 戴兴建,魏鲲鹏,张小章,等. 飞轮储能技术研究五十年评述[J]. 储能科学与技术,2018,7(5): 765-782. doi: 10.12028/j.issn.2095-4239.2018.0083

    DAI Xingjian, WEI Kunpeng, ZHANG Xiaozhang, et al. A review on flywheel energy storage technology in fifty years[J]. Energy Storage Science and Technology, 2018, 7(5): 765-782. doi: 10.12028/j.issn.2095-4239.2018.0083
    [10] XU K X, WU D J, JIAO Y L, et al. A fully superconducting bearing system for flywheel applications[J]. Superconductor Science and Technology, 2016, 29(6): 064001.1-064001.8.
    [11] IBRAHIM H, ILINCA A, PERRON J. Energy storage systems: characteristics and comparisons[J]. Renewable and Sustainable Energy Reviews, 2008, 12(5): 1221-1250. doi: 10.1016/j.rser.2007.01.023
    [12] WOLSKY A M. The status and prospects for flywheels and SMES that incorporate HTS[J]. Physica C: Superconductivity, 2002, 372/373/374/375/376: 1495-1499.
    [13] XIN Y, LI W X, DONG Q, et al. Superconductors and Lenz’s law[J]. Superconductor Science and Technology, 2020, 33(5): 055004.1-055004.9.
    [14] HOLESINGER T G, BINGERT J F, TEPLITSKY M, et al. Spatial variations in composition in high-critical-current-density Bi-2223 tapes[J]. Journal of Materials Research, 2000, 15(2): 285-295. doi: 10.1557/JMR.2000.0047
    [15] SHALABY M S, HASHEM H M, HAMMAD T R, et al. Higher critical current density achieved in Bi-2223 high-Tc superconductors[J]. Journal of Radiation Research and Applied Sciences, 2016, 9(3): 345-351. doi: 10.1016/j.jrras.2016.04.001
    [16] XU X N, LU D W, YUAN G Q, et al. Studies of strong magnetic field produced by permanent magnet array for magnetic refrigeration[J]. Journal of Applied Physics, 2004, 95(11): 6302-6307. doi: 10.1063/1.1713046
    [17] 包小倩,毛华云,高学绪. 镝扩渗对烧结钕铁硼磁体组织结构与磁性能的影响[J]. 北京科技大学学报,2014,36(9): 1215-1221. doi: 10.13374/j.issn1001-053x.2014.09.013

    BAO Xiaoqian, MAO Huayun, GAO Xuexu. Microstructure and magnetic properties of sintered Nd-Fe-B magnets by Dy diffusion treatment[J]. Journal of University of Science and Technology Beijing, 2014, 36(9): 1215-1221. doi: 10.13374/j.issn1001-053x.2014.09.013
    [18] LI W X, YANG T H, XIN Y. Novel methods for measuring the inductance of superconducting coils and material resistivity[J]. IEEE Transactions on Instrumentation and Measurement, 2021, 70: 1501808.1-1501808.8.
    [19] 赵凯华. 磁单极子与超导线圈问题的困惑[J]. 物理教学,2009,31(7): 2-4.
    [20] LI W X, YANG T H, XIN Y. Experimental study of electromagnetic interaction between a permanent magnet and an HTS coil[J]. Journal of Superconductivity and Novel Magnetism, 2021, 34(8): 2047-2057. doi: 10.1007/s10948-021-05917-8
    [21] GONZÁLEZ-GIL A, PALACIN R, BATTY P. Sustainable urban rail systems: strategies and technologies for optimal management of regenerative braking energy[J]. Energy Conversion and Management, 2013, 75: 374-388. doi: 10.1016/j.enconman.2013.06.039
    [22] OGASA M. Energy saving and environmental measures in railway technologies: example with hybrid electric railway vehicles[J]. IEEJ Transactions on Electrical and Electronic Engineering, 2008, 3(1): 15-20. doi: 10.1002/tee.20227
    [23] SHIMADA M, OISHI R, ARAKI D, et al. Energy storage system for effective use of regenerative energy in electrified railways[J]. Hitachi Review, 2010, 59(1): 33-38.
    [24] KUMAR E A. Hydraulic regenerative braking system[J]. International Journal of Scientific and Engineering Research, 2012, 3(4): 1-12.
    [25] 马茜,郭昕,罗培,等. 一种基于超级电容储能系统的新型铁路功率调节器[J]. 电工技术学报,2018,33(6): 1208-1218. doi: 10.19595/j.cnki.1000-6753.tces.161986

    MA Qian, GUO Xin, LUO Pei, et al. A novel railway power conditioner based on super capacitor energy storage system[J]. Transactions of China Electrotechnical Society, 2018, 33(6): 1208-1218. doi: 10.19595/j.cnki.1000-6753.tces.161986
    [26] 霍利杰,杨轶成,孙婷,等. 地铁再生制动能量分散回馈多模控制研究[J]. 电气技术,2020,21(3): 37-43. doi: 10.3969/j.issn.1673-3800.2020.03.011

    HUO Lijie, YANG Yicheng, SUN Ting, et al. Research on multi-mode control of energy regenerative feedback of regenerative braking in metro[J]. Electrical Engineering, 2020, 21(3): 37-43. doi: 10.3969/j.issn.1673-3800.2020.03.011
  • 加载中
图(11) / 表(1)
计量
  • 文章访问数:  329
  • HTML全文浏览量:  331
  • PDF下载量:  26
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-02-21
  • 修回日期:  2022-05-13
  • 网络出版日期:  2023-01-13
  • 刊出日期:  2022-05-25

目录

    /

    返回文章
    返回