Principle and Application Prospective of Novel Superconducting Energy Conversion/Storage Device
-
摘要:
基于新发现的永磁体与超导线圈之间的相互作用规律,提出了利用永磁体与闭合超导线圈构成新型短时能量转换/存储装置. 通过在不同永磁体运动路径和运行速度时进行的多组实验,测量和分析了永磁体与闭合超导线圈相互作用过程中永磁体处在不同位置时的相互作用力和超导线圈内电流,验证所提装置原理的可行性并掌握其功能规律;进一步测量在静止状态时超导线圈中电流随时间的衰减情况,得到该装置的损耗特征. 研究结果显示:该装置可在无需附加发电机/电动机条件下实现机械能→电磁能→机械能转换,能量效率达到9成以上. 该新型超导能量转换/存储装置在城市轨道车辆制动能量回收再利用和航母舰载机辅助电磁弹射等领域具有广泛的应用前景.
Abstract:Based on the newly discovered interaction behavior between a permanent magnet and a superconducting coil, a novel superconducting energy conversion/storage device is proposed with a structure of a permanent magnet and a closed superconducting coil. Several groups of experiments with different trajectories and speeds of the magnet are carried out. When the magnet is at different positions, the interaction force between the magnet and the closed superconducting coil and the current in the superconducting coil are measured and analyzed to validate the principle of the proposed device and clarify the function properties. When the magnet is stationary, the current attenuation in the coil over time is measured to obtain the operating loss characteristics of the device. Results show that the proposed device can realize the conversion from mechanical energy to electromagnetic energy to mechanical energy without additional generator/motor, and the energy conversion efficiency can reach more than 90%. This indicates that the proposed device is promising in applications such as regenerative braking of urban vehicles and electromagnetic aircraft ejection.
-
表 1 实验所用超导线圈参数
Table 1. Superconducting coil parameters in experiment
超导线圈 带材临界电流/A@K 线圈数/匝 线圈内径/mm 线圈外径/mm 线圈高度/mm 线圈电感测量值/µH Bi-2223 159@77 30 60 67 8.8 114 Gd-123 140@77 30 60 73 10 115 -
[1] HUGGINS R A. Energy storage: fundamentals, materials and applications[M]. 2nd Edition. Cham: Springer , 2015. [2] 吴皓文,王军,龚迎莉,等. 储能技术发展现状及应用前景分析[J]. 电力学报,2021,36(5): 434-443. doi: 10.13357/j.dlxb.2021.052WU Haowen, WANG Jun, GONG Yingli, et al. Development status and application prospect analysis of energy storage technology[J]. Journal of Electric Power, 2021, 36(5): 434-443. doi: 10.13357/j.dlxb.2021.052 [3] BUCKLES W, HASSENZAHL W V. Superconducting magnetic energy storage[J]. IEEE Power Engineering Review, 2000, 20(5): 16-20. doi: 10.1109/39.841345 [4] TIXADOR P. Superconducting magnetic energy storage: status and perspective[C]//IEEE CSC & ESAS European Superconductivity News Forum. [S.l.]: IEEE, 2008: 1-14. [5] MUKHERJEE P, RAO V V. Superconducting magnetic energy storage for stabilizing grid integrated with wind power generation systems[J]. Journal of Modern Power Systems and Clean Energy, 2019, 7(2): 400-411. doi: 10.1007/s40565-018-0460-y [6] 郭文勇,张京业,张志丰,等. 超导储能系统的研究现状及应用前景[J]. 科技导报,2016,34(23): 68-80.GUO Wenyong, ZHANG Jingye, ZHANG Zhifeng, et al. Current research status and application prospect of SMES[J]. Science & Technology Review, 2016, 34(23): 68-80. [7] 邱傅杰,徐克西,盛培龙. 小型飞轮储能系统高温超导磁悬浮轴承[J]. 电工技术学报,2014,29(1): 181-186. doi: 10.3969/j.issn.1000-6753.2014.01.025QIU Fujie, XU Kexi, SHENG Peilong. Small-scale flywheel energy storage system equipped with high temperature superconducting magnetic bearing[J]. Transactions of China Electrotechnical Society, 2014, 29(1): 181-186. doi: 10.3969/j.issn.1000-6753.2014.01.025 [8] 李万杰,张国民,王新文,等. 飞轮储能系统用超导电磁混合磁悬浮轴承设计[J]. 电工技术学报,2020,35(增1): 10-18. doi: 10.19595/j.cnki.1000-6753.tces.l80394LI Wanjie, ZHANG Guomin, WANG Xinwen, et al. Integration design of high-temperature superconducting bearing and electromagnetic thrust bearing for flywheel energy storage system[J]. Transactions of China Electrotechnical Society, 2020, 35(S1): 10-18. doi: 10.19595/j.cnki.1000-6753.tces.l80394 [9] 戴兴建,魏鲲鹏,张小章,等. 飞轮储能技术研究五十年评述[J]. 储能科学与技术,2018,7(5): 765-782. doi: 10.12028/j.issn.2095-4239.2018.0083DAI Xingjian, WEI Kunpeng, ZHANG Xiaozhang, et al. A review on flywheel energy storage technology in fifty years[J]. Energy Storage Science and Technology, 2018, 7(5): 765-782. doi: 10.12028/j.issn.2095-4239.2018.0083 [10] XU K X, WU D J, JIAO Y L, et al. A fully superconducting bearing system for flywheel applications[J]. Superconductor Science and Technology, 2016, 29(6): 064001.1-064001.8. [11] IBRAHIM H, ILINCA A, PERRON J. Energy storage systems: characteristics and comparisons[J]. Renewable and Sustainable Energy Reviews, 2008, 12(5): 1221-1250. doi: 10.1016/j.rser.2007.01.023 [12] WOLSKY A M. The status and prospects for flywheels and SMES that incorporate HTS[J]. Physica C: Superconductivity, 2002, 372/373/374/375/376: 1495-1499. [13] XIN Y, LI W X, DONG Q, et al. Superconductors and Lenz’s law[J]. Superconductor Science and Technology, 2020, 33(5): 055004.1-055004.9. [14] HOLESINGER T G, BINGERT J F, TEPLITSKY M, et al. Spatial variations in composition in high-critical-current-density Bi-2223 tapes[J]. Journal of Materials Research, 2000, 15(2): 285-295. doi: 10.1557/JMR.2000.0047 [15] SHALABY M S, HASHEM H M, HAMMAD T R, et al. Higher critical current density achieved in Bi-2223 high-Tc superconductors[J]. Journal of Radiation Research and Applied Sciences, 2016, 9(3): 345-351. doi: 10.1016/j.jrras.2016.04.001 [16] XU X N, LU D W, YUAN G Q, et al. Studies of strong magnetic field produced by permanent magnet array for magnetic refrigeration[J]. Journal of Applied Physics, 2004, 95(11): 6302-6307. doi: 10.1063/1.1713046 [17] 包小倩,毛华云,高学绪. 镝扩渗对烧结钕铁硼磁体组织结构与磁性能的影响[J]. 北京科技大学学报,2014,36(9): 1215-1221. doi: 10.13374/j.issn1001-053x.2014.09.013BAO Xiaoqian, MAO Huayun, GAO Xuexu. Microstructure and magnetic properties of sintered Nd-Fe-B magnets by Dy diffusion treatment[J]. Journal of University of Science and Technology Beijing, 2014, 36(9): 1215-1221. doi: 10.13374/j.issn1001-053x.2014.09.013 [18] LI W X, YANG T H, XIN Y. Novel methods for measuring the inductance of superconducting coils and material resistivity[J]. IEEE Transactions on Instrumentation and Measurement, 2021, 70: 1501808.1-1501808.8. [19] 赵凯华. 磁单极子与超导线圈问题的困惑[J]. 物理教学,2009,31(7): 2-4. [20] LI W X, YANG T H, XIN Y. Experimental study of electromagnetic interaction between a permanent magnet and an HTS coil[J]. Journal of Superconductivity and Novel Magnetism, 2021, 34(8): 2047-2057. doi: 10.1007/s10948-021-05917-8 [21] GONZÁLEZ-GIL A, PALACIN R, BATTY P. Sustainable urban rail systems: strategies and technologies for optimal management of regenerative braking energy[J]. Energy Conversion and Management, 2013, 75: 374-388. doi: 10.1016/j.enconman.2013.06.039 [22] OGASA M. Energy saving and environmental measures in railway technologies: example with hybrid electric railway vehicles[J]. IEEJ Transactions on Electrical and Electronic Engineering, 2008, 3(1): 15-20. doi: 10.1002/tee.20227 [23] SHIMADA M, OISHI R, ARAKI D, et al. Energy storage system for effective use of regenerative energy in electrified railways[J]. Hitachi Review, 2010, 59(1): 33-38. [24] KUMAR E A. Hydraulic regenerative braking system[J]. International Journal of Scientific and Engineering Research, 2012, 3(4): 1-12. [25] 马茜,郭昕,罗培,等. 一种基于超级电容储能系统的新型铁路功率调节器[J]. 电工技术学报,2018,33(6): 1208-1218. doi: 10.19595/j.cnki.1000-6753.tces.161986MA Qian, GUO Xin, LUO Pei, et al. A novel railway power conditioner based on super capacitor energy storage system[J]. Transactions of China Electrotechnical Society, 2018, 33(6): 1208-1218. doi: 10.19595/j.cnki.1000-6753.tces.161986 [26] 霍利杰,杨轶成,孙婷,等. 地铁再生制动能量分散回馈多模控制研究[J]. 电气技术,2020,21(3): 37-43. doi: 10.3969/j.issn.1673-3800.2020.03.011HUO Lijie, YANG Yicheng, SUN Ting, et al. Research on multi-mode control of energy regenerative feedback of regenerative braking in metro[J]. Electrical Engineering, 2020, 21(3): 37-43. doi: 10.3969/j.issn.1673-3800.2020.03.011