• ISSN 0258-2724
  • CN 51-1277/U
  • EI Compendex
  • Scopus 收录
  • 全国中文核心期刊
  • 中国科技论文统计源期刊
  • 中国科学引文数据库来源期刊

高速动车组车下设备的吊耳动力学分析

丁杰

丁杰. 高速动车组车下设备的吊耳动力学分析[J]. 西南交通大学学报, 2024, 59(1): 168-176. doi: 10.3969/j.issn.0258-2724.20220106
引用本文: 丁杰. 高速动车组车下设备的吊耳动力学分析[J]. 西南交通大学学报, 2024, 59(1): 168-176. doi: 10.3969/j.issn.0258-2724.20220106
DING Jie. Dynamic Analysis of Lifting Lug of Equipment Under High Speed EMU[J]. Journal of Southwest Jiaotong University, 2024, 59(1): 168-176. doi: 10.3969/j.issn.0258-2724.20220106
Citation: DING Jie. Dynamic Analysis of Lifting Lug of Equipment Under High Speed EMU[J]. Journal of Southwest Jiaotong University, 2024, 59(1): 168-176. doi: 10.3969/j.issn.0258-2724.20220106

高速动车组车下设备的吊耳动力学分析

doi: 10.3969/j.issn.0258-2724.20220106
基金项目: 湖南省自然科学基金(2020JJ4448);湖南省教育厅科学研究重点项目(21A0416)
详细信息
    作者简介:

    丁杰(1979—),男,教授级高级工程师,博士,研究方向为轨道交通振动噪声及电力电子器件可靠性,E-mail:dj8083@126.com

  • 中图分类号: U270.11

Dynamic Analysis of Lifting Lug of Equipment Under High Speed EMU

  • 摘要:

    为揭示CRH380AL高速动车组车下设备不同位置的吊耳产生裂纹差异很大的原因,开展实车运行工况下的振动和气动载荷测试,建立车下设备-车辆-轮轨-线路多重耦合大系统动力学模型,其中的车体和车下设备利用有限元法建立弹性体模型,轮轨子系统和转向架子系统使用多刚体动力学建模,轨道不平顺谱应用武汉至广州区间的实际测量数据,隧道通过和隧道交会等工况的气动载荷由八节车气动模型数值模拟获得,分析了车体弹性、气动载荷和螺栓刚度等因素对车下设备吊耳支反力的影响. 研究表明:车下设备与车辆系统之间存在强烈的耦合行为,车下设备本身质量分布和车体弹性耦合效应导致4号吊耳垂向动态载荷最大,与现场故障裂纹占比最高的情况对应;气动载荷对车下设备8号吊耳动态载荷存在明显影响;低频区域的吊耳动态载荷随螺栓刚度的增大而增大,垂向平均动载荷和最大动载荷分别为其余2个方向的4倍和6倍. 基于线路和车辆耦合的动力学分析方法可为车下设备动态力学行为的设计和疲劳性能的优化提供理论支撑.

     

  • 图 1  车体底架与车下设备

    Figure 1.  Body chassis and under-chassis equipment

    图 2  实际线路测试数据

    Figure 2.  Measured data from actual lines

    图 3  刚柔耦合系统的简化力学模型

    Figure 3.  Simplified mechanical model of rigid-flexible coupled system

    图 4  车体的模态振型

    Figure 4.  Modal shapes of vehicle body

    图 5  车下设备的模态振型

    Figure 5.  Modal shapes of under-chassis equipment

    图 6  气动载荷的计算区域(单位:m)

    Figure 6.  Computational region of aerodynamic load (unit: m)

    图 7  气动载荷计算结果

    Figure 7.  Computational results of aerodynamic loads

    图 8  多重耦合大系统动力学模型

    Figure 8.  Dynamics model of multi-coupled large-scale system

    图 9  不同吊耳的垂向支反力频谱曲线

    Figure 9.  Spectrum curves of vertical reaction force from different lifting lugs

    图 10  4号吊耳垂向支反力频谱曲线

    Figure 10.  Spectrum curves of vertical reaction force from No.4 lifting lug

    图 11  吊耳支反力随螺栓刚度的变化

    Figure 11.  Variation of reaction force of lifting lug with bolt stiffness

    图 12  不同情况下的吊耳垂向支反力比值

    Figure 12.  Ratios of vertical reaction force of lifting lug under different conditions

    表  1  实际线路振动测试结果

    Table  1.   Vibration test results from actual lines m/s2

    方向工况1 号吊耳振动方均根值 4 号吊耳振动方均根值
    垂向纵向横向垂向纵向横向
    上行明线0.370.390.340.570.540.55
    隧道0.410.430.410.600.590.54
    交会0.420.450.390.810.790.84
    下行明线0.380.410.340.480.490.44
    隧道0.450.480.420.680.680.62
    交会0.440.450.420.730.740.68
    下载: 导出CSV

    表  2  车体用铝合金材料的主要机械性能参数

    Table  2.   Main mechanical performance parameters of aluminum alloy materials for vehicle body MPa

    材料名称使用部位弹性极限 疲劳强度
    母材焊缝母材焊缝
    A5083P-O端墙12512510339
    A6N01S-T5侧墙、车顶2051207839
    A7N01P-T4底架补强板19517613539
    A7N01S-T5底架24520511939
    下载: 导出CSV
  • [1] 邱飞力. 车下设备与车体间振动传递关系研究[D]. 成都: 西南交通大学, 2011.
    [2] 吴会超,邬平波,吴娜,等. 车下设备悬挂参数与车体结构之间匹配关系研究[J]. 振动与冲击,2013,32(3): 124-128. doi: 10.3969/j.issn.1000-3835.2013.03.025

    WU Huichao, WU Pingbo, WU Na, et al. Matching relations between equipment suspension parameters and a carbody structure[J]. Journal of Vibration and Shock, 2013, 32(3): 124-128. doi: 10.3969/j.issn.1000-3835.2013.03.025
    [3] 罗光兵. 高速列车车体及车下设备耦合振动研究[D]. 成都: 西南交通大学, 2014.
    [4] 宫岛,周劲松,孙文静,等. 高速列车车下设备模态匹配及试验研究[J]. 铁道学报,2014,36(10): 13-20. doi: 10.3969/j.issn.1001-8360.2014.10.003

    GONG Dao, ZHOU Jinsong, SUN Wenjing, et al. Modal matching between suspended equipment and car body of a high-speed railway vehicle and in-situ experiment[J]. Journal of the China Railway Society, 2014, 36(10): 13-20. doi: 10.3969/j.issn.1001-8360.2014.10.003
    [5] 郭金莹,石怀龙,邬平波,等. 动车组车下设备对舒适度的影响分析[J]. 机械工程学报,2020,56(22): 227-236. doi: 10.3901/JME.2020.22.227

    GUO Jinying, SHI Huailong, WU Pingbo, et al. Influence of car body-suspended equipment on the ride comfort of high-speed railway vehicles[J]. Journal of Mechanical Engineering, 2020, 56(22): 227-236. doi: 10.3901/JME.2020.22.227
    [6] SHI H L, LUO R, WU P B, et al. Application of DVA theory in vibration reduction of carbody with suspended equipment for high-speed EMU[J]. Science China: Technological Sciences, 2014, 57(7): 1425-1438. doi: 10.1007/s11431-014-5558-5
    [7] 于金朋,张卫华,张立民,等. 高速动车组车下悬挂设备隔振设计研究[J]. 铁道学报,2017,39(1): 33-40. doi: 10.3969/j.issn.1001-8360.2017.01.005

    YU Jinpeng, ZHANG Weihua, ZHANG Limin, et al. Research on vibration isolation design of suspension equipment for high-speed train[J]. Journal of the China Railway Society, 2017, 39(1): 33-40. doi: 10.3969/j.issn.1001-8360.2017.01.005
    [8] 汪群生,曾京,魏来,等. 车下悬吊设备不均衡振动对车体振动的影响[J]. 铁道学报,2017,39(2): 24-31. doi: 10.3969/j.issn.1001-8360.2017.02.004

    WANG Qunsheng, ZENG Jing, WEI Lai, et al. Influence of unbalanced vibration of underneath suspended system on carbody vibration[J]. Journal of the China Railway Society, 2017, 39(2): 24-31. doi: 10.3969/j.issn.1001-8360.2017.02.004
    [9] 韦青山. 高速动车组车体铝合金横梁疲劳裂纹扩展研究[D]. 北京: 北京交通大学, 2018.
    [10] 王翔. 高速动车组车体关键位置疲劳裂纹扩展研究[D]. 北京: 北京交通大学, 2019.
    [11] European Committee for Standardization. Railway applications—structural requirements of railway vehicle bodies: EN 12663[S]. London: BSI Standards Limited, 2010.
    [12] International Electro Technical Commission Technical Committee 9. Railway applications—rolling stock equipment—shock and vibration test: IEC 61373[S]. Geneva: Standards Press of International Electro Technical Commission, 1999.
    [13] 熊小慧,梁习锋. CRH2型动车组列车交会空气压力波试验分析[J]. 铁道学报,2009,31(6): 15-20. doi: 10.3969/j.issn.1001-8360.2009.06.003

    XIONG Xiaohui, LIANG Xifeng. Analysis of air pressure pulses in meeting of CRH2 EMU trains[J]. Journal of the China Railway Society, 2009, 31(6): 15-20. doi: 10.3969/j.issn.1001-8360.2009.06.003
    [14] LING L, XIAO X B, XIONG J Y, et al. A 3D model for coupling dynamics analysis of high-speed train/track system[J]. Journal of Zhejiang University—Science A (Applied Physics & Engineering), 2014, 15(12): 964-983.
    [15] 王鹏,陈恩利,惠美玲,等. 高速动车组车体模态特性分析[J]. 振动、测试与诊断,2019,39(6): 1305-1310,1366. doi: 10.16450/j.cnki.issn.1004-6801.2019.06.024

    WANG Peng, CHEN Enli, HUI Meiling, et al. Modal characteristics analysis for car body of high-speed electric multiple units[J]. Journal of Vibration, Measurement & Diagnosis, 2019, 39(6): 1305-1310,1366. doi: 10.16450/j.cnki.issn.1004-6801.2019.06.024
    [16] 国家铁路局. 铁路应用——空气动力学: TB/T 3503—2018[S]. 北京: 中国铁道出版社有限公司, 2018.
    [17] 许建林,孙建成,梅元贵,等. 高速列车隧道内交会压力波基本特性数值模拟研究[J]. 振动与冲击,2016,35(3): 184-191. doi: 10.13465/j.cnki.jvs.2016.03.029

    XU Jianlin, SUN Jiancheng, MEI Yuangui, et al. Numerical simulation on crossing pressure wave characteristics of two high-speed trains in tunnel[J]. Journal of Vibration and Shock, 2016, 35(3): 184-191. doi: 10.13465/j.cnki.jvs.2016.03.029
    [18] 梅元贵,孙建成,许建林,等. 高速列车隧道交会压力波特性[J]. 交通运输工程学报,2015,15(5): 34-43. doi: 10.3969/j.issn.1671-1637.2015.05.005

    MEI Yuangui, SUN Jiancheng, XU Jianlin, et al. Crossing pressure wave characteristics of high-speed trains in tunnel[J]. Journal of Traffic and Transportation Engineering, 2015, 15(5): 34-43. doi: 10.3969/j.issn.1671-1637.2015.05.005
    [19] 马伟斌,张千里,刘艳青. 中国高速铁路隧道气动效应研究进展[J]. 交通运输工程学报,2012,12(4): 25-32. doi: 10.3969/j.issn.1671-1637.2012.04.004

    MA Weibin, ZHANG Qianli, LIU Yanqing. Study evolvement of high-speed railway tunnel aerodynamic effect in China[J]. Journal of Traffic and Transportation Engineering, 2012, 12(4): 25-32. doi: 10.3969/j.issn.1671-1637.2012.04.004
    [20] 田红旗. 列车空气动力学[M]. 北京: 中国铁道出版社, 2007.
    [21] 贺小龙,张立民,鲁连涛,等. 多级多悬挂设备对高速列车垂向振动影响研究[J]. 振动与冲击,2017,36(22): 245-251.

    HE Xiaolong, ZHANG Limin, LU Liantao, et al. The influence of multistage and suspension multi-equipment on the vertical vibration of high-speed vehicles[J]. Journal of Vibration and Shock, 2017, 36(22): 245-251.
    [22] 宫岛,周劲松,杜帅妹,等. 高速动车组车下设备对车体振动传递与模态频率的影响机理研究[J]. 机械工程学报,2016,52(18): 126-133.

    GONG Dao, ZHOU Jinsong, DU Shuaimei, et al. Study on the effect of the underframe equipment on vibration transmissibility and modal frequency of the car body for high-speed EMU trains[J]. Journal of Mechanical Engineering, 2016, 52(18): 126-133.
  • 加载中
图(12) / 表(2)
计量
  • 文章访问数:  311
  • HTML全文浏览量:  118
  • PDF下载量:  52
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-02-11
  • 修回日期:  2022-05-05
  • 网络出版日期:  2023-01-13
  • 刊出日期:  2022-05-07

目录

    /

    返回文章
    返回