• ISSN 0258-2724
  • CN 51-1277/U
  • EI Compendex
  • Scopus 收录
  • 全国中文核心期刊
  • 中国科技论文统计源期刊
  • 中国科学引文数据库来源期刊

考虑冲刷效应的大跨桥梁地震-风-车-桥耦合振动分析

王亚伟 朱金 郑凯锋 苏永华 郭辉 李永乐

王亚伟, 朱金, 郑凯锋, 苏永华, 郭辉, 李永乐. 考虑冲刷效应的大跨桥梁地震-风-车-桥耦合振动分析[J]. 西南交通大学学报, 2024, 59(2): 323-331. doi: 10.3969/j.issn.0258-2724.20220091
引用本文: 王亚伟, 朱金, 郑凯锋, 苏永华, 郭辉, 李永乐. 考虑冲刷效应的大跨桥梁地震-风-车-桥耦合振动分析[J]. 西南交通大学学报, 2024, 59(2): 323-331. doi: 10.3969/j.issn.0258-2724.20220091
WANG Yawei, ZHU Jin, ZHENG Kaifeng, SU Yonghua, GUO Hui, LI Yongle. Coupled Vibration Analysis of Earthquake-Wind-Vehicle-Bridge for Long-Span Bridges Considering Scouring Effect[J]. Journal of Southwest Jiaotong University, 2024, 59(2): 323-331. doi: 10.3969/j.issn.0258-2724.20220091
Citation: WANG Yawei, ZHU Jin, ZHENG Kaifeng, SU Yonghua, GUO Hui, LI Yongle. Coupled Vibration Analysis of Earthquake-Wind-Vehicle-Bridge for Long-Span Bridges Considering Scouring Effect[J]. Journal of Southwest Jiaotong University, 2024, 59(2): 323-331. doi: 10.3969/j.issn.0258-2724.20220091

考虑冲刷效应的大跨桥梁地震-风-车-桥耦合振动分析

doi: 10.3969/j.issn.0258-2724.20220091
基金项目: 国家自然科学基金(51908472);中国博士后科学基金(2019TQ0271, 2019M663554);四川省科学技术厅科技计划项目(2020YJ080)
详细信息
    作者简介:

    王亚伟(1991—),男,助理研究员,博士,研究方向为桥梁多动力,E-mail:hbuwyw1991@sina.com

    通讯作者:

    朱金(1988—),男,副教授,博士,研究方向为风-车-桥耦合振动,桥梁多动力,E-mail:zhujin19880102@126.com

  • 中图分类号: U447

Coupled Vibration Analysis of Earthquake-Wind-Vehicle-Bridge for Long-Span Bridges Considering Scouring Effect

  • 摘要:

    为研究冲刷效应对地震与风联合作用下大跨桥梁动力响应的影响,在已建立的地震-风-车-桥耦合振动分析模型基础上,利用p-y曲线(p为土阻力,y为变形)折减法考虑不同冲刷深度的桩土荷载-位移关系,根据桩土荷载-位移关系和冲刷深度更新桩基的侧向支撑刚度和长度,从而考虑了冲刷效应对大跨桥梁动力响应的影响,并将模型应用到江顺大桥冲刷效应的分析研究中. 研究结果表明:基础冲刷减弱了地基土对结构的侧向约束,从而降低结构的自振频率,侧向振型的自振频率最大降低6.01%;在运营车辆和风荷载作用下,基础冲刷对结构的振动响应影响很小;在地震发生后,基础冲刷会增大结构的横向振动,结构的横向位移响应极值最大增大9.1%,横向位移响应谱也相应增大,而对结构的竖向振动影响很小;基础冲刷可能减小车辆横向加速度的响应,车辆的横向加速度响应极值最大降低7.7%,对车辆的竖向振动影响很小.

     

  • 图 1  斜拉桥模型(单位:m)

    Figure 1.  Prototype of cable-stayed bridge (unit: m)

    图 2  带有群桩基础的桥塔模型(单位:m)

    Figure 2.  Prototype of bridge tower with group-pile foundation (unit: m)

    图 3  模拟示意

    Figure 3.  Simulation

    图 4  桥址处桩土的p-y曲线

    Figure 4.  p-y curves of soil for piles at bridge site

    图 5  主梁跨中的u(t)时程和w(t)时程

    Figure 5.  Horizontal turbulent wind velocity time history and vertical turbulent wind velocity time history at bridge mid-span

    图 6  桥梁支撑点N1、N3和N5位置处水平方向的地震动加速度时程

    Figure 6.  Seismic acceleration time histories of support points N1, N3, and N5 along horizontal direction

    图 7  地震和运营荷载作用下主梁跨中的位移响应

    Figure 7.  Displacement responses at bridge mid-span under and seismic and operational loads

    图 8  地震和运营荷载作用下主梁跨中的位移响应谱

    Figure 8.  Displacement response spectrum at bridge mid-span under seismic and operational loads

    图 9  地震和运营荷载作用下左桥塔顶的横向位移响应

    Figure 9.  Lateral displacement responses at left tower top under seismic and operational loads

    图 10  地震和运营荷载作用下左桥塔顶的横向位移响应谱

    Figure 10.  Lateral displacement response spectrum at left tower top under seismic and operational loads

    图 11  地震和运营荷载作用下代表车辆的加速度响应

    Figure 11.  Acceleration responses of representative vehicle under seismic and operational loads

    表  1  桥梁结构的前十阶自振频率和振型

    Table  1.   First 10 natural vibration frequencies and modes of bridge

    振型数自振频率/Hz振型
    10.0905纵飘(主梁)
    20.20291 阶对称侧弯(主梁、桥塔)
    30.25721 阶反对称侧弯(主梁、桥塔)
    40.29172 阶对称侧弯(主梁、桥塔)
    50.29441 阶对称竖弯(主梁)
    60.33311 阶反对称竖弯(主梁)
    70.34502 阶对称竖弯(主梁)
    80.38902 阶反对称竖弯(主梁)
    90.41382 阶反对称侧弯(主梁、桥塔)
    100.42741 阶对称扭转(主梁)
    下载: 导出CSV

    表  2  群桩基础处不同土层的物理和力学参数

    Table  2.   Physical and mechanical properties of different soil layers at group-pile foundation

    土层 地基土
    的类别
    土层
    厚度/m
    重度/
    (kN·m−3
    排水剪切
    强度/kPa
    内摩擦
    角/(°)
    泊松比 弹性模量/
    MPa
    单轴抗压
    强度/MPa
    最大主应力为50% 的应变 应变
    因子
    1 无黏性
    砂土
    7.5 18 30 0.30 3
    2 黏性土 10.0 20 93.8 0.35 21 0.007
    3 软岩 29.5 22 0.25 7240 3.45 0.0005
    下载: 导出CSV

    表  3  不同冲刷深度时桥梁的自振频率

    Table  3.   Natural frequencies of the bridge under various scour depths Hz

    振型序号冲刷深度
    05 m10 m15 m20 m
    10.09050.09030.09020.09010.0894
    20.20290.19940.19870.19840.1907
    30.25720.25310.25230.25200.2428
    40.29170.29120.29110.29100.2835
    50.29440.29330.29280.29260.2899
    60.33310.32610.32400.32290.2988
    70.34500.33660.33420.33310.3138
    80.38900.38600.38520.38480.3796
    90.41380.40700.40580.40530.3864
    100.42740.41790.41520.41390.3907
    下载: 导出CSV
  • [1] WARDHANA K, HADIPRIONO F C. Analysis of recent bridge failures in the United States[J]. Journal of Performance of Constructed Facilities, 2003, 17(3): 144-150. doi: 10.1061/(ASCE)0887-3828(2003)17:3(144)
    [2] DIAZ E E M, MORENO F N, MOHAMMADI J. Investigation of common causes of bridge collapse in Colombia[J]. Practice Periodical on Structural Design and Construction, 2009, 14(4): 194-200. doi: 10.1061/(ASCE)SC.1943-5576.0000006
    [3] 易仁彦,周瑞峰,黄茜. 近15年国内桥梁坍塌事故的原因和风险分析[J]. 交通科技,2015(5): 61-64.

    YI Renyan, ZHOU Ruifeng, HUANG Qian. Reason and risk of bridge collapse in recent 15 years[J]. Transportation Science & Technology, 2015(5): 61-64.
    [4] 商宇,叶爱君,王晓伟. 冲刷条件下的桩基桥梁振动台试验[J]. 中国公路学报,2017,30(12): 280-289.

    SHANG Yu, YE Aijun, WANG Xiaowei. Shake table test of pile supported bridge under scour condition[J]. China Journal of Highway and Transport, 2017, 30(12): 280-289.
    [5] 梁发云,王琛,贾承岳,等. 冲刷深度对简支桥模态参数影响的模型试验[J]. 振动与冲击,2016,35(14): 145-150.

    LIANG Fayun, WANG Chen, JIA Chengyue, et al. Model test on the influence of scour depth on modal parameters of simply supported bridge[J]. Journal of Vibration and Shock, 2016, 35(14): 145-150.
    [6] 熊文,邹晨,叶见曙. 基于动力特性识别的桥墩冲刷状态分析[J]. 中国公路学报,2017,30(5): 89-96.

    XIONG Wen, ZOU Chen, YE Jianshu. Condition assessment of bridge scour by tracing dynamic performances of bridges[J]. China Journal of Highway and Transport, 2017, 30(5): 89-96.
    [7] CHEN C C, WU W H, SHIH F, et al. Scour evaluation for foundation of a cable-stayed bridge based on ambient vibration measurements of superstructure[J]. NDT & E International, 2014, 66: 16-27.
    [8] BAO T, LIU Z L, BIRD K. Influence of soil characteristics on natural frequency-based bridge scour detection[J]. Journal of Sound and Vibration, 2019, 446: 195-210. doi: 10.1016/j.jsv.2019.01.040
    [9] MALEKJAFARIAN A, PRENDERGAST L J, OBRIEN E. Use of mode shape ratios for pier scour monitoring in two-span integral bridges under changing environmental conditions[J]. Canadian Journal of Civil Engineering, 2020, 47(8): 962-973. doi: 10.1139/cjce-2018-0800
    [10] KHAN M A, MCCRUM D P, PRENDERGAST L J, et al. Laboratory investigation of a bridge scour monitoring method using decentralized modal analysis[J]. Structural Health Monitoring, 2021, 20(6): 3327-3341. doi: 10.1177/1475921720985122
    [11] 李克冰,张楠,方翔宇,等. 考虑河流冲刷作用的车桥耦合系统动力分析[J]. 振动与冲击,2014,33(19): 40-47,73.

    LI Kebing, ZHANG Nan, FANG Xiangyu, et al. Dynamic analysis of a vehicle-bridge coupled system considering river scouring[J]. Journal of Vibration and Shock, 2014, 33(19): 40-47,73.
    [12] KONG X, CAI C S. Scour effect on bridge and vehicle responses under bridge-vehicle-wave interaction[J]. Journal of Bridge Engineering, 2016, 21(4): 04015083.1-04015083.16. doi: 10.1061/(ASCE)BE.1943-5592.0000868
    [13] WANG Z H, DUEÑAS -OSORIO L, PADGETT J E. Influence of scour effects on the seismic response of reinforced concrete bridges[J]. Engineering Structures, 2014, 76: 202-214. doi: 10.1016/j.engstruct.2014.06.026
    [14] 杨婷婷,李岩,林雪琦. 基于车辆制动激励和小波包能量分析的连续梁桥基础冲刷识别方法[J]. 中国公路学报,2021,34(4): 51-60.

    YANG Tingting, LI Yan, LIN Xueqi. Foundation scour identification method based on vehicle braking excitation and wavelet packet energy analysis for continuous beam bridges[J]. China Journal of Highway and Transport, 2021, 34(4): 51-60.
    [15] 李岩,张振浩,林国伟,等. 基础冲刷对多种车激作用下桥梁动力行为的影响[J]. 哈尔滨工业大学学报,2021,53(9): 17-25.

    LI Yan, ZHANG Zhenhao, LIN Guowei, et al. Scour effect on dynamic performance of bridges under excitations of vehicles with various driving conditions[J]. Journal of Harbin Institute of Technology, 2021, 53(9): 17-25.
    [16] WEI K, HE H F, ZHANG J R, et al. An endurance time method-based fragility analysis framework for cable stayed bridge systems under scour and earthquake[J]. Ocean Engineering, 2021, 232: 109128.1-109128.12. doi: 10.1016/j.oceaneng.2021.109128
    [17] REESE L C. LPILE Plus 3.0: A program for the analysis of piles and drilled shafts under lateral loads[CP]. Austin: Ensoft, 1997.
    [18] LI W, IGOE D, GAVIN K. Evaluation of CPT-based p-y models for laterally loaded piles in siliceous sand[J]. Géotechnique Letters, 2014, 4(2): 110-117.
    [19] YANG K J, LI Q X, WANG F Y. Behavior of pile groups under lateral load[J]. China Ocean Engineering, 1991, 5(2): 235-244.
    [20] 谢耀峰. 横向承载群桩性状及承载力研究[J]. 岩土工程学报,1996,18(6): 39-45.

    XIE Yaofeng. Behavior and bearing capacity of laterally loaded pile groups[J]. Chinese Journal of Geotechnical Engineering, 1996, 18(6): 39-45.
    [21] ZHU J, ZHANG W, WU M X. Coupled dynamic analysis of the vehicle-bridge-wind-wave system[J]. Journal of Bridge Engineering, 2018, 23(8): 04018054.1-04018054.17.
    [22] BAKER C J. A simplified analysis of various types of wind-induced road vehicle accidents[J]. Journal of Wind Engineering and Industrial Aerodynamics, 1986, 22(1): 69-85. doi: 10.1016/0167-6105(86)90012-7
    [23] LI Y L, QIANG S Z, LIAO H L, et al. Dynamics of wind-rail vehicle-bridge systems[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2005, 93: 483-507. doi: 10.1016/j.jweia.2005.04.001
    [24] LÉGER P, IDÉ I M, PAULTRE P. Multiple-support seismic analysis of large structures[J]. Computers & Structures, 1990, 36(6): 1153-1158.
    [25] HAN Y, LIU S, HU J X, et al. Experimental study on aerodynamic derivatives of a bridge cross-section under different traffic flows[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2014, 133: 250-262. doi: 10.1016/j.jweia.2014.08.003
    [26] HAN Y, HU J X, CAI C S, et al. Experimental and numerical studies of aerodynamic forces on vehicles and bridges[J]. Wind and Structures, 2013, 17(2): 163-184. doi: 10.12989/was.2013.17.2.163
    [27] American Association of State Highway Transportation Officials (AASHTO). Guide specifications for bridges vulnerable to coastal storms[S]. Washington D. C.: IHS Markit, 2008.
  • 加载中
图(11) / 表(3)
计量
  • 文章访问数:  320
  • HTML全文浏览量:  82
  • PDF下载量:  50
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-02-02
  • 修回日期:  2022-04-25
  • 网络出版日期:  2023-09-06
  • 刊出日期:  2022-05-23

目录

    /

    返回文章
    返回