• ISSN 0258-2724
  • CN 51-1277/U
  • EI Compendex
  • Scopus 收录
  • 全国中文核心期刊
  • 中国科技论文统计源期刊
  • 中国科学引文数据库来源期刊

机械加工质量预测研究现状与发展趋势

高宏力 孙弋 郭亮 由智超 刘岳开 李世超 雷云聪

高宏力, 孙弋, 郭亮, 由智超, 刘岳开, 李世超, 雷云聪. 机械加工质量预测研究现状与发展趋势[J]. 西南交通大学学报, 2024, 59(1): 121-141. doi: 10.3969/j.issn.0258-2724.20220085
引用本文: 高宏力, 孙弋, 郭亮, 由智超, 刘岳开, 李世超, 雷云聪. 机械加工质量预测研究现状与发展趋势[J]. 西南交通大学学报, 2024, 59(1): 121-141. doi: 10.3969/j.issn.0258-2724.20220085
GAO Hongli, SUN Yi, GUO Liang, YOU Zhichao, LIU Yuekai, LI Shichao, LEI Yuncong. Research Status and Development Trend of Machining Quality Prediction[J]. Journal of Southwest Jiaotong University, 2024, 59(1): 121-141. doi: 10.3969/j.issn.0258-2724.20220085
Citation: GAO Hongli, SUN Yi, GUO Liang, YOU Zhichao, LIU Yuekai, LI Shichao, LEI Yuncong. Research Status and Development Trend of Machining Quality Prediction[J]. Journal of Southwest Jiaotong University, 2024, 59(1): 121-141. doi: 10.3969/j.issn.0258-2724.20220085

机械加工质量预测研究现状与发展趋势

doi: 10.3969/j.issn.0258-2724.20220085
基金项目: 国家自然科学基金(51775452);中央引导地方科技发展专项资金(2020ZYD012)
详细信息
    作者简介:

    高宏力(1971—),男,教授,研究方向为设备智能化状态监测与故障诊断技术,E-mail:hongligao@swjtu.edu.cn

  • 中图分类号: TH878;TG547

Research Status and Development Trend of Machining Quality Prediction

  • 摘要:

    机械加工质量预测是智能制造的重要组成内容,也是实现质量闭环控制的前提条件,对推动智能制造系统真正落地应用具有极其重要的作用. 在对机械加工质量预测的历史进行简要回顾时发现,学者多将研究重点放在机床某一关键部件对加工质量影响的机理研究,却鲜见部件耦合影响的关联性研究. 基于上述难题,本文首先剖析影响机械加工质量的7类要素,包括刀具几何参数、切削参数、切削液类型、热误差与热变形、数控机床零部件性能退化、切削颤振以及系统特性;随后,根据各要素数据种类和测量方式的不同,将机械加工质量监测与预测方法划分为4大类,包括机器视觉测量、功率测量、振动测量以及其他测量方法,并对各方法的技术特点、局限性和发展动态进行了阐述;最后,考虑各机械加工质量监测与预测方法的不足,指出材料切削机制研究、数据质量评估方法、面向工业现场数据库构建的标准以及质量预测信息的智能表征与可视化等方面可能是未来的发展趋势.

     

  • 图 1  机械加工质量的影响因素

    Figure 1.  Influencing factors of machining quality

    图 2  基于视觉测量的加工质量预测方法现状

    Figure 2.  Machining quality prediction methods based on visual measurement

    图 3  表面质量的各成分分析

    Figure 3.  Component analysis of surface quality

    图 4  不同机械加工过程的颤振现象

    Figure 4.  Chatter phenomena in different machining processes

    图 5  机器视觉测量方法的发展

    Figure 5.  Development of machine vision measurement methods

    图 6  功率测量方法的发展

    Figure 6.  Development of machine vision measurement methods

    图 7  典型实验平台

    Figure 7.  Typical experimental platform

    图 8  不同粗糙度下的时域/频域信号

    Figure 8.  Time domain/frequency domain signals with different roughness

    图 9  机械加工质量预测的发展趋势

    Figure 9.  Development trend of machining quality prediction

    表  1  加工质量影响因素统计

    Table  1.   Statistics of influencing factors of processing quality

    类型子类型影响是否显著主要检测手段文献
    刀具几何参数材料优化离线监测[9-10]
    结构优化离线监测[6, 12-16]
    切削参数在线监测[20-25, 27, 29]
    切削液类型离线监测[32-36]
    热误差与热变形离线监测[37-41]
    机床零部件性能退化丝杠在线监测[42-45]
    主轴在线监测[46-49]
    切削颤振在线监测、
    离线监测
    [50-54]
    刀具-工件-夹具-机床系统特性离线监测[55-57]
    下载: 导出CSV

    表  2  2种主要的视觉测量粗糙度等表面质量识别方法

    Table  2.   Comparison of two main visual measurement methods for surface quality recognition such as roughness

    测量方式优点缺点
     光学测量
    (白光干涉仪、超景深三维显微系统)
     非接触式测量,对被测工件无损伤;对区域的微观三维形貌的准确测量  单次检测区域较小;设备测试、维护较为昂贵;对检测环境要求高,容易受到现场加工环境影响
     视觉间接测量(基于机器视觉的加工纹理图样分析方法)  容易满足批量化测试需求,进而实现在线或在机测量;测试与监测过程自动化程度高,能够实现快速、高效地反馈工件加工质量情况  准确性和对于实际加工过程的多变工况、光源设置差异等情形的鲁棒性有待优化;对于颤振纹理识别效果
    较好
    下载: 导出CSV

    表  3  基于机器视觉的形状误差识别

    Table  3.   Shape error recognition based on machine vision

    识别任务硬件设备算法设计
    零件检测技术[66] CCD图像传感器  边缘检测、轮廓
    提取
     组件精密测量与装配方法[67]  基于双摄像机架构的自动装配系统  Canny算子、Radon变换、最小二乘拟合
    零件尺寸测量[68]  光源、相机与图像采集卡等  图像增强、图像滤波、边缘检测
    直线度误差检测[69]  LED背光照明、CCD相机、远心
    镜头
     平滑去噪、亚像素边缘提取、模板匹配
    径向跳动测量[73]  相机标定实验台、背光源、摄像机  代数与几何椭圆拟合、亚像素边缘检测、
    下载: 导出CSV

    表  4  振动信号预测表面粗糙度方法

    Table  4.   Surface roughness prediction method based on vibration signal

    作者采用信号方法结果数据集(工件数量)
    Hessainia Z等 [114] 轴向和径向振动信号、切削条件 TDA $R = 99.9{\text{%}} $ 训练集:27,测试集=训练集
    Upadhay V等[115] 三向振动信号、切削条件 TDA $R_{{\rm{adj}}}^2 = 93.2{\text{%}} ,{\bar e_{\rm{r}}} = 3.5{\text{%}} $ 训练集:15,测试集=训练集
    Salgado D R等[116]
    三向振动信号、切削条件、刀具参数
    SSA ${\bar e_{\rm{r}}} = 5.74{\text{%}} $ 训练集:35,测试集:20
    García P E等[117] 三向振动信号 SSA $R_{ {\rm{adj} } }^2 = 87.8{\text{%} } ,{\bar e_{\rm{r} } } = 14.60{\text{%} }$
    $R = 92{\text{%}} $
    训练集:270,测试集:90
    Kirby E D等[118] 轴向加速度信号、切削条件 TDA ${\bar e_{\rm{r} } } = 5.00{\text{%} }$ 训练集:83,测试集:7
    Risbod K A等[119] 径向振动信号、切削条件 TDA $e_{\rm{r},\max } = 5.00{\text{%} }$ 训练集:—,测试集:20
    Plaza E G等[120] 三向加速度信号、三向振动信号 FFT $R_{ {\rm{adj} } }^2 = 86.7{\text{%} } ,{\bar e_{\rm{r} } } = 9.80{\text{%} }$ 训练集:52,测试集:12
    下载: 导出CSV
  • [1] MASAHIKO J, ISAMU G, TAKESHI W. Development of cBN ball-nosed end mill with newly designed cutting edge[J]. Journal of Materials Processing Technology, 2007, 192/193: 48-54. doi: 10.1016/j.jmatprotec.2007.04.054
    [2] JARDINE A K S, LIN D, BANJEVIC D. A review on machinery diagnostics and prognostics implementing condition-based maintenance[J]. Mechanical Systems and Signal Processing, 2006, 20(7): 1483-1510. doi: 10.1016/j.ymssp.2005.09.012
    [3] TETI R, JEMIELNIAK K, O’DONNELL G. Advanced monitoring of machining operations[J]. CIRP Annals, 2010, 59(2): 717-739. doi: 10.1016/j.cirp.2010.05.010
    [4] 雷亚国,许学方,蔡潇,等. 面向机械装备健康监测的数据质量保障方法研究[J]. 机械工程学报,2021,57(4): 1-9. doi: 10.3901/JME.2021.04.001

    LEI Yaguo, XU Xuefang, CAI Xiao, et al. Research on data quality assurance for health condition monitoring of machinery[J]. Journal of Mechanical Engineering, 2021, 57(4): 1-9. doi: 10.3901/JME.2021.04.001
    [5] ARUNACHALAM R M, MANNAN M A, SPOWAGE A C. Residual stress and surface roughness when facing age hardened Inconel 718 with CBN and ceramic cutting tools[J]. International Journal of Machine Tools and Manufacture, 2004, 44(9): 879-887. doi: 10.1016/j.ijmachtools.2004.02.016
    [6] RAO A, SARMA R. On local gouging in five-axis sculptured surface machining using flat-end tools[J]. Computer-Aided Design, 2000, 32(7): 409-420. doi: 10.1016/S0010-4485(99)00105-0
    [7] TOURNIER C, DUC E. Iso-scallop tool path generation in 5-axis milling[J]. The International Journal of Advanced Manufacturing Technology, 2005, 25(9/10): 867-875.
    [8] 刘献礼,姜志鹏,李茂月,等. 基于残留高度设计的模具加工用新型圆角端铣刀[J]. 机械工程学报,2015,51(5): 192-204. doi: 10.3901/JME.2015.05.192

    LIU Xianli, JIANG Zhipeng, LI Maoyue, et al. New rounded end mill for mold processing based on scallop-height[J]. Journal of Mechanical Engineering, 2015, 51(5): 192-204. doi: 10.3901/JME.2015.05.192
    [9] 姜彦翠,刘献礼,丁云鹏,等. 汽车大型覆盖件淬硬钢模具切削加工技术[J]. 哈尔滨理工大学学报,2013,18(1): 7-13. doi: 10.3969/j.issn.1007-2683.2013.01.002

    JIANG Yancui, LIU Xianli, DING Yunpeng, et al. Machining technology of hardened steel molds of automobile large covering[J]. Journal of Harbin University of Science and Technology, 2013, 18(1): 7-13. doi: 10.3969/j.issn.1007-2683.2013.01.002
    [10] CHEN J S B, HUANG Y K, CHEN M S. Feedrate optimization and tool profile modification for the high-efficiency ball-end milling process[J]. International Journal of Machine Tools and Manufacture, 2005, 45(9): 1070-1076. doi: 10.1016/j.ijmachtools.2004.11.020
    [11] 张安山. 汽车模具小曲率面宽行加工技术研究及其刀具开发[D]. 哈尔滨: 哈尔滨理工大学, 2015.
    [12] CHEN L X, LIU Z Q, SHEN Q. Enhancing tribological performance by anodizing micro-textured surfaces with nano-MoS2 coatings prepared on aluminum-silicon alloys[J]. Tribology International, 2018, 122: 84-95. doi: 10.1016/j.triboint.2018.02.039
    [13] DENG J X, LIAN Y S, WU Z. Performance of femtosecond laser-textured cutting tools deposited with WS2 solid lubricant coatings[J]. Surface and Coatings Technology, 2013, 222: 135-143. doi: 10.1016/j.surfcoat.2013.02.015
    [14] SUN J L, ZHOU Y H, DENG J X, et al. Effect of hybrid texture combining micro-pits and micro-grooves on cutting performance of WC/Co-based tools[J]. The International Journal of Advanced Manufacturing Technology, 2016, 86(9/10/11/12): 3383-3394.
    [15] JIANG W P. Bio-inspired self-sharpening cutting tool surface for finish hard turning of steel[J]. CIRP Annals, 2014, 63(1): 517-520. doi: 10.1016/j.cirp.2014.03.047
    [16] 潘晨,李庆华,胡恺星,等. 微织构刀具对工件表面残余应力影响有限元分析[J]. 组合机床与自动化加工技术,2020(1): 14-16,21.

    PAN Chen, LI Qinghua, HU Kaixing, et al. The effect of micro-textured tool on surface residual stress of workpiece based on finite element analysis[J]. Modular Machine Tool & Automatic Manufacturing Technique, 2020(1): 14-16,21.
    [17] 马峰,张华,曹华军. 面向低能耗少切削液的多目标加工参数优化[J]. 机械工程学报,2017,53(11): 157-163. doi: 10.3901/JME.2017.11.157

    MA Feng, ZHANG Hua, CAO Huajun. Multi-objective machining parameters optimization for low energy and minimum cutting fluid consumption[J]. Journal of Mechanical Engineering, 2017, 53(11): 157-163. doi: 10.3901/JME.2017.11.157
    [18] 陈行政,李聪波,李丽,等. 面向能效的多工步数控铣削工艺参数多目标优化模型[J]. 计算机集成制造系统,2016,22(2): 538-546. doi: 10.13196/j.cims.2016.02.026

    CHEN Xingzheng, LI Congbo, LI Li, et al. Multi-objective parameter optimization model of multi-pass CNC milling for energy efficiency[J]. Computer Integrated Manufacturing Systems, 2016, 22(2): 538-546. doi: 10.13196/j.cims.2016.02.026
    [19] MOURA R R. The effect of application of cutting fluid with solid lubricant in suspension during cutting of Ti-6Al-4V alloy[J]. Wear, 2015, 332/333: 762-771. doi: 10.1016/j.wear.2015.02.051
    [20] 李聪波,朱岩涛,李丽,等. 面向能量效率的数控铣削加工参数多目标优化模型[J]. 机械工程学报,2016,52(21): 120-129. doi: 10.3901/JME.2016.21.120

    LI Congbo, ZHU Yantao, LI Li, et al. Multi-objective CNC milling parameters optimization model for energy efficiency[J]. Journal of Mechanical Engineering, 2016, 52(21): 120-129. doi: 10.3901/JME.2016.21.120
    [21] 王进峰,潘丽娟,邢迪雄,等. 基于能耗效率的SiCp/Al复合材料切削参数多目标优化[J]. 中南大学学报(自然科学版),2020,51(6): 1565-1574.

    WANG Jinfeng, PAN Lijuan, XING Dixiong, et al. Multi-objective optimization of cutting parameters on turning SiCp/Al composites based on energy efficiency[J]. Journal of Central South University (Science and Technology), 2020, 51(6): 1565-1574.
    [22] MAIER M, ZWICKER R, AKBARI M. Bayesian optimization for autonomous process set-up in turning[J]. CIRP Journal of Manufacturing Science and Technology, 2019, 26: 81-87. doi: 10.1016/j.cirpj.2019.04.005
    [23] KUMAR S P L. Measurement and uncertainty analysis of surface roughness and material removal rate in micro turning operation and process parameters optimization[J]. Measurement, 2019, 140: 538-547. doi: 10.1016/j.measurement.2019.04.029
    [24] 邓聪颖,叶波,禄盛,等. 基于切削稳定性与表面质量约束的铣削工艺参数优化研究[J]. 仪器仪表学报,2021,42(11): 190-199.

    DENG Congying, YE Bo, LU Sheng, et al. Optimization of milling process parameters considering the constraints of cutting stability and surface quality[J]. Chinese Journal of Scientific Instrument, 2021, 42(11): 190-199.
    [25] VOGLER M P, DEVOR R E, KAPOOR S G. On the modeling and analysis of machining performance in micro-endmilling, part I: surface generation[J]. Journal of Manufacturing Science and Engineering, 2004, 126(4): 685-694. doi: 10.1115/1.1813470
    [26] 石文天,刘玉德,丁悦,等. PCD刀具微细车削硬铝合金的表面质量研究[J]. 机床与液压,2011,39(17): 15-17. doi: 10.3969/j.issn.1001-3881.2011.17.005

    SHI Wentian, LIU Yude, DING Yue, et al. Research of surface quality in micro-turning aluminum alloy using PCD tools[J]. Machine Tool & Hydraulics, 2011, 39(17): 15-17. doi: 10.3969/j.issn.1001-3881.2011.17.005
    [27] 王慧,李南奇,赵国超,等. 基于航空铸造钛合金Ti-6Al-4V高速铣削参数的表面质量及切削效率优化[J]. 表面技术,2022,51(2): 331-337,346. doi: 10.16490/j.cnki.issn.1001-3660.2022.02.033

    WANG Hui, LI Nanqi, ZHAO Guochao, et al. Optimization of surface quality and cutting efficiency for high-speed milling parameters of titanium alloy Ti-6Al-4V for aviation casting[J]. Surface Technology, 2022, 51(2): 331-337,346. doi: 10.16490/j.cnki.issn.1001-3660.2022.02.033
    [28] 李俊烨,朱志宝,张心明,等. 异形截面孔磨粒流精密加工质量分析[J]. 中国机械工程,2021,32(17): 2063-2073. doi: 10.3969/j.issn.1004-132X.2021.17.007

    LI Junye, ZHU Zhibao, ZHANG Xinming, et al. Quality analysis for abrasive flow precision machining of special-shaped holes[J]. China Mechanical Engineering, 2021, 32(17): 2063-2073. doi: 10.3969/j.issn.1004-132X.2021.17.007
    [29] 刘枭,邓文君,陈海涛,等. 低温切削7075铝合金鳞刺形成规律及抑制措施[J]. 中国机械工程,2022,33(3): 261-269. doi: 10.3969/j.issn.1004-132X.2022.03.002

    LIU Xiao, DENG Wenjun, CHEN Haitao, et al. Scale thorn formation regularity and inhibitory measures in cryogenic cutting processes of aluminum alloy 7075[J]. China Mechanical Engineering, 2022, 33(3): 261-269. doi: 10.3969/j.issn.1004-132X.2022.03.002
    [30] KRISHNA P V, SRIKANT R R, RAO D N. Experimental investigation on the performance of nanoboric acid suspensions in SAE-40 and coconut oil during turning of AISI 1040 steel[J]. International Journal of Machine Tools and Manufacture, 2010, 50(10): 911-916. doi: 10.1016/j.ijmachtools.2010.06.001
    [31] MARKSBERRY P W. Micro-flood (MF) technology for sustainable manufacturing operations that are coolant less and occupationally friendly[J]. Journal of Cleaner Production, 2007, 15(10): 958-971. doi: 10.1016/j.jclepro.2006.01.006
    [32] KAYNAK Y, GHARIBI A, YILMAZ U. A comparison of flood cooling, minimum quantity lubrication and high pressure coolant on machining and surface integrity of titanium Ti-5553 alloy[J]. Journal of Manufacturing Processes, 2018, 34: 503-512. doi: 10.1016/j.jmapro.2018.06.003
    [33] 袁松梅,韩文亮,朱光远,等. 绿色切削微量润滑增效技术研究进展[J]. 机械工程学报,2019,55(5): 175-185. doi: 10.3901/JME.2019.05.175

    YUAN Songmei, HAN Wenliang, ZHU Guangyuan, et al. Recent progress on the efficiency increasing methods of minimum quantity lubrication technology in green cutting[J]. Journal of Mechanical Engineering, 2019, 55(5): 175-185. doi: 10.3901/JME.2019.05.175
    [34] YAN L T, ZHANG Q J, YU J Z. Analytical models for oil penetration and experimental study on vibration assisted machining with minimum quantity lubrication[J]. International Journal of Mechanical Sciences, 2018, 148: 374-382. doi: 10.1016/j.ijmecsci.2018.09.016
    [35] JAMIL M, KHAN A M, HEGAB H, et al. Effects of hybrid Al2O3-CNT nanofluids and cryogenic cooling on machining of Ti–6Al–4V[J]. The International Journal of Advanced Manufacturing Technology, 2019, 102(9/10/11/12): 3895-3909.
    [36] PARK K H, EWALD B, KWON P Y. Effect of nano-enhanced lubricant in minimum quantity lubrication balling milling[J]. Journal of Tribology, 2011, 133(3): 031803.1-031803.8.
    [37] ZHANG Y, YANG J G, JIANG H. Machine tool thermal error modeling and prediction by grey neural network[J]. The International Journal of Advanced Manufacturing Technology, 2012, 59(9/10/11/12): 1065-1072.
    [38] FU G Q, GONG H W, GAO H L, et al. Integrated thermal error modeling of machine tool spindle using a chicken swarm optimization algorithm-based radial basic function neural network[J]. The International Journal of Advanced Manufacturing Technology, 2019, 105(5/6): 2039-2055.
    [39] FU G Q, TAO C, XIE Y P, et al. Temperature-sensitive point selection for thermal error modeling of machine tool spindle by considering heat source regions[J]. The International Journal of Advanced Manufacturing Technology, 2021, 112(9/10): 2447-2460.
    [40] LI Y, ZHAO J, JI S J. Thermal positioning error modeling of machine tools using a bat algorithm-based back propagation neural network[J]. The International Journal of Advanced Manufacturing Technology, 2018, 97(5/6/7/8): 2575-2586.
    [41] LIU H. Thermal error robust modeling method for CNC machine tools based on a split unbiased estimation algorithm[J]. Precision Engineering, 2018, 51: 169-175. doi: 10.1016/j.precisioneng.2017.08.007
    [42] 高宏力,李登万,许明恒. 基于人工智能的丝杠寿命预测技术[J]. 西南交通大学学报,2010,45(5): 685-691. doi: 10.3969/j.issn.0258-2724.2010.05.006

    GAO Hongli, LI Dengwan, XU Mingheng. Intelligent monitoring system for screw life evaluation[J]. Journal of Southwest Jiaotong University, 2010, 45(5): 685-691. doi: 10.3969/j.issn.0258-2724.2010.05.006
    [43] ZHANG L. Instance-based ensemble deep transfer learning network: a new intelligent degradation recognition method and its application on ball screw[J]. Mechanical Systems and Signal Processing, 2020, 140: 106681.1-106681.14.
    [44] 郭亮,高宏力,张一文,等. 基于深度学习理论的轴承状态识别研究[J]. 振动与冲击,2016,35(12): 166-170,195. doi: 10.13465/j.cnki.jvs.2016.12.026

    GUO Liang, GAO Hongli, ZHANG Yiwen, et al. Research on bearing condition monitoring based on deep learning[J]. Journal of Vibration and Shock, 2016, 35(12): 166-170,195. doi: 10.13465/j.cnki.jvs.2016.12.026
    [45] TAN Y W, GUO L, GAO H L, et al. Deep coupled joint distribution adaptation network: a method for intelligent fault diagnosis between artificial and real damages[J]. IEEE Transactions on Instrumentation and Measurement, 2021, 70: 1-12.
    [46] 高宏力. 切削加工过程中刀具磨损的智能监测技术研究[D]. 成都: 西南交通大学, 2005.
    [47] 高宏力,许明恒,傅攀,等. 基于动态树理论的刀具磨损监测技术[J]. 机械工程学报,2006,42(7): 227-230. doi: 10.3321/j.issn:0577-6686.2006.07.041

    GAO Hongli, XU Mingheng, FU Pan, et al. Tool wear monitoring based on dynamic tree[J]. Chinese Journal of Mechanical Engineering, 2006, 42(7): 227-230. doi: 10.3321/j.issn:0577-6686.2006.07.041
    [48] YOU Z C. On-line milling cutter wear monitoring in a wide field-of-view camera[J]. Wear, 2020, 460/461: 203479.1-203479.15. doi: 10.1016/j.wear.2020.203479
    [49] LIU Y K, YU Y X, GUO L, et al. Automatically designing network-based deep transfer learning architectures based on genetic algorithm for in situ tool condition monitoring[J]. IEEE Transactions on Industrial Electronics, 2022, 69(9): 9483-9493. doi: 10.1109/TIE.2021.3113004
    [50] 李忠群. 复杂切削条件高速铣削加工动力学建模、仿真与切削参数优化研究[D]. 北京: 北京航空航天大学, 2008.
    [51] 王跃辉,王民. 金属切削过程颤振控制技术的研究进展[J]. 机械工程学报,2010,46(7): 166-174. doi: 10.3901/JME.2010.07.166

    WANG Yuehui, WANG Min. Advances on machining chatter suppression research[J]. Journal of Mechanical Engineering, 2010, 46(7): 166-174. doi: 10.3901/JME.2010.07.166
    [52] 杨毅青,张斌,刘强. 铣削建模中多种切削力模型的分析比较[J]. 振动工程学报,2015,28(1): 82-90.

    YANG Yiqing, ZHANG Bin, LIU Qiang. Analysis and comparison of various cutting force models in the milling process simulation[J]. Journal of Vibration Engineering, 2015, 28(1): 82-90.
    [53] 张钊. 薄壁结构铣削过程颤振分析及抑制研究[D]. 上海: 上海交通大学, 2018.
    [54] 张奇. 铣削加工颤振稳定性分析和颤振辨识研究[D]. 上海: 上海交通大学, 2020.
    [55] 高翔,游红武,翁晓红,等. 机床系统静刚度试验用千分表测力环力学特性[J]. 轻工机械,2013,31(3): 28-31. doi: 10.3969/j.issn.1005-2895.2013.03.008

    GAO Xiang, YOU Hongwu, WENG Xiaohong, et al. Study on mechanical properties of dynamometer ring used in static stiffness experiment of machine tools system[J]. Light Industry Machinery, 2013, 31(3): 28-31. doi: 10.3969/j.issn.1005-2895.2013.03.008
    [56] 万小金. 工件−夹具−刀具系统的几何误差分析与预测研究[D]. 武汉: 华中科技大学, 2010.
    [57] 彭诚. 车铣复合机床静动态特性分析及关键部件的优化[D]. 合肥: 合肥工业大学, 2019.
    [58] 李轶尚. 基于机器视觉的清洁切削加工表面粗糙度在位测量方法及其系统构建[D]. 济南: 山东大学, 2021.
    [59] 李瑛. 拖拉机传动箱端面销孔加工质量机器视觉测量与预警分析[D]. 杭州: 浙江大学, 2019.
    [60] 万志坚. 非接触式表面粗糙度识别方法的研究[J]. 制造技术与机床,2006(10): 73-75. doi: 10.3969/j.issn.1005-2402.2006.10.028

    WAN Zhijian. Study on the method for non-contact roughness detection[J]. Manufacturing Technology and Machine Tool, 2006(10): 73-75. doi: 10.3969/j.issn.1005-2402.2006.10.028
    [61] 路恩会. 基于机器视觉的磨削表面粗糙度检测方法研究[D]. 长沙: 湖南大学, 2016.
    [62] CHEN W, ZOU B, LI Y S, et al. A study of a rapid method for detecting the machined surface roughness[J]. The International Journal of Advanced Manufacturing Technology, 2021, 117(9/10): 3115-3127.
    [63] 易怀安. 基于色彩信息的机器视觉粗糙度检测方法研究[D]. 长沙: 湖南大学, 2017.
    [64] 蔡雯,陈培锋,王英,等. 基于激光散射的表面粗糙度测量系统研究[J]. 激光技术,2020,44(5): 611-615. doi: 10.7510/jgjs.issn.1001-3806.2020.05.014

    CAI Wen, CHEN Peifeng, WANG Ying, et al. Research of surface roughness measurement system based on laser scattering[J]. Laser Technology, 2020, 44(5): 611-615. doi: 10.7510/jgjs.issn.1001-3806.2020.05.014
    [65] LI Y S, ZOU B, SHI Z Y, et al. Wear patterns and mechanisms of sialon ceramic end-milling tool during high speed machining of nickel-based superalloy[J]. Ceramics International, 2021, 47(4): 5690-5698. doi: 10.1016/j.ceramint.2020.10.155
    [66] 陈向伟,王龙山,刘庆民. 图像技术在微小零件几何尺寸测量中的应用[J]. 工具技术,2005,39(8): 86-89. doi: 10.3969/j.issn.1000-7008.2005.08.027

    CHEN Xiangwei, WANG Longshan, LIU Qingmin. Application of CCD image technology on measuring size of micro part[J]. Tool Engineering, 2005, 39(8): 86-89. doi: 10.3969/j.issn.1000-7008.2005.08.027
    [67] 朱萃. 基于机器视觉的微小型组件精密测量与装配[D]. 大连: 大连理工大学, 2010.
    [68] 雷红胜. 基于机器视觉的零件尺寸测量及加工精度分析[D]. 南昌: 南昌航空大学, 2014.
    [69] 王营营. 基于机器视觉的曲轴轴颈轴线直线度误差检测[D]. 太原: 太原科技大学, 2015.
    [70] 付泰,王桂棠,程书豪,等. 基于机器视觉的复杂平面零件尺寸精密检测[J]. 机电工程技术,2016,45(8): 7-9,84. doi: 10.3969/j.issn.1009-9492.2016.08.003

    FU Tai, WANG Guitang, CHENG Shuhao, et al. Size sophisticated detection based on machine vision complex plane parts[J]. Mechanical and Electrical Engineering Technology, 2016, 45(8): 7-9,84. doi: 10.3969/j.issn.1009-9492.2016.08.003
    [71] 陆兴华,魏盼. 基于机器视觉的柱状弹簧质量综合检测系统[J]. 工具技术,2017,51(12): 110-114. doi: 10.3969/j.issn.1000-7008.2017.12.029

    LU Xinghua, WEI Pan. Quality measuring system of cylindrical spring based on machine vision[J]. Tool Engineering, 2017, 51(12): 110-114. doi: 10.3969/j.issn.1000-7008.2017.12.029
    [72] 张海心. 基于机器视觉的轴类零件测量仪设计[D]. 哈尔滨: 哈尔滨工业大学, 2018.
    [73] 包昊菁. 基于机器视觉的链轮径向跳动测量技术研究[D]. 长春: 吉林大学, 2020.
    [74] KHALIFA O O, DENSIBALI A, FARIS W. Image processing for chatter identification in machining processes[J]. The International Journal of Advanced Manufacturing Technology, 2006, 31(5/6): 443-449.
    [75] FENG Z, CHEN X. Image processing of the grinding wheel surface[J]. The International Journal of Advanced Manufacturing Technology, 2007, 32(5/6): 452-458.
    [76] BAMBERGER H, RAMACHANDRAN S, HONG E, et al. Identification of machining chatter marks on surfaces of automotive valve seats[J]. Journal of Manufacturing Science and Engineering, 2011, 133(4): 041003.1-041003.4.
    [77] SZYDŁOWSKI M, POWAŁKA B. Chatter detection algorithm based on machine vision[J]. The International Journal of Advanced Manufacturing Technology, 2012, 62(5/6/7/8): 517-528.
    [78] LEI N, SOSHI M. Vision-based system for chatter identification and process optimization in high-speed milling[J]. The International Journal of Advanced Manufacturing Technology, 2017, 89(9/10/11/12): 2757-2769.
    [79] RIFAI A P, FUKUDA R, AOYAMA H. Surface roughness estimation and chatter vibration identification using vision-based deep learning[J]. Journal of the Japan Society for Precision Engineering, 2019, 85(7): 658-666. doi: 10.2493/jjspe.85.658
    [80] ZHU W G, ZHUANG J C, GUO B S, et al. An optimized convolutional neural network for chatter detection in the milling of thin-walled parts[J]. The International Journal of Advanced Manufacturing Technology, 2020, 106(9/10): 3881-3895.
    [81] 王志学,刘献礼,李茂月,等. 切削加工颤振智能监控技术[J]. 机械工程学报,2020,56(24): 1-23. doi: 10.3901/JME.2020.24.001

    WANG Zhixue, LIU Xianli, LI Maoyue, et al. Intelligent monitoring and control technology of cutting chatter[J]. Journal of Mechanical Engineering, 2020, 56(24): 1-23. doi: 10.3901/JME.2020.24.001
    [82] SHI D F, GINDY N. Tool wear prediction based on wavelet transform and support vector machines[J]. ICINCO, 2011: 479-485.
    [83] 张航. 基于迁移学习的磨削表面粗糙度测量方法研究[D]. 长沙: 湖南大学, 2017.
    [84] 史雪春. 基于机器学习的切削状态监测技术研究[D]. 北京: 北京理工大学, 2018.
    [85] 唐梓珏. 激光熔化沉积熔池动态特征演化行为及关键形性质量预测研究[D]. 大连: 大连理工大学, 2020.
    [86] 贺晓辉,鄢萍,张佳毅,等. 功率信息互相关法的刀具破损在线监测[J]. 重庆大学学报,2011,34(9): 9-16. doi: 10.11835/j.issn.1000-582X.2011.09.002

    HE Xiaohui, YAN Ping, ZHANG Jiayi, et al. On-line tool breakage monitoring method based on power information and cross-correlation algorithm[J]. Journal of Chongqing University, 2011, 34(9): 9-16. doi: 10.11835/j.issn.1000-582X.2011.09.002
    [87] 王永新. 基于功率和神经网络的刀具状态在线监测研究[J]. 科技创新与应用,2012(7): 9-10.
    [88] KARANDIKAR J M, ABBAS A, SCHMITZ T L. Remaining useful tool life predictions in turning using Bayesian inference[J]. International Journal of Prognostics and Health Management, 2020, 4(2): 1-11.
    [89] DROUILLET C. Tool life predictions in milling using spindle power with the neural network technique[J]. Journal of Manufacturing Processes, 2016, 22: 161-168. doi: 10.1016/j.jmapro.2016.03.010
    [90] 谢楠,段明雷,高英强,等. 基于功率传感器的刀具磨损量预测方法[J]. 同济大学学报(自然科学版),2017,45(3): 420-426. doi: 10.11908/j.issn.0253-374x.2017.03.017

    XIE Nan, DUAN Minglei, GAO Yingqiang, et al. Tool wear prediction approach based on power sensor[J]. Journal of Tongji University (Natural Science), 2017, 45(3): 420-426. doi: 10.11908/j.issn.0253-374x.2017.03.017
    [91] 李聪波,万腾,陈行政,等. 基于切削功率的数控车削批量加工刀具磨损在线监测[J]. 计算机集成制造系统,2018,24(8): 1910-1919. doi: 10.13196/j.cims.2018.08.003

    LI Congbo, WAN Teng, CHEN Xingzheng, et al. On-line monitoring method of tool wear for NC turning in batch processing based on cutting power[J]. Computer Integrated Manufacturing Systems, 2018, 24(8): 1910-1919. doi: 10.13196/j.cims.2018.08.003
    [92] 付细群,刘俊,熊文亮. 基于HHT算法和功率信号的刀具磨损预测[J]. 机械工程与自动化,2019(5): 159-161. doi: 10.3969/j.issn.1672-6413.2019.05.063

    FU Xiqun, LIU Jun, XIONG Wenliang. Tool wear prediction based on HHT algorithm and power signal[J]. Mechanical Engineering and Automation, 2019(5): 159-161. doi: 10.3969/j.issn.1672-6413.2019.05.063
    [93] 朱广文,魏代善,孙佳隆,等. 基于功率监测的刀具磨损状态识别[J]. 电子制作,2020(22): 28-29. doi: 10.3969/j.issn.1006-5059.2020.22.010

    ZHU Guangwen, WEI Daishan, SUN Jialong, et al. Tool Wear State Recognition Based on Power Monitoring[J]. Electronic Production, 2020(22): 28-29. doi: 10.3969/j.issn.1006-5059.2020.22.010
    [94] 张坤鹏. 基于功率信号的转子轮槽铣削在线监控研究[J]. 热力透平,2017,46(1): 52-55. doi: 10.13707/j.cnki.31-1922/th.2017.01.012

    ZHANG Kunpeng. Online monitoring system for the rotor groove milling based on power signal[J]. Thermal Turbine, 2017, 46(1): 52-55. doi: 10.13707/j.cnki.31-1922/th.2017.01.012
    [95] 万文波,李江雄,毕运波. 基于功率信号的钻锪刀具监测及其系统开发[J]. 计算机集成制造系统,2019,25(9): 2140-2148. doi: 10.13196/j.cims.2019.09.002

    WAN Wenbo, LI Jiangxiong, BI Yunbo. Drilling and dimpling tool monitoring based on power signal and its system development[J]. Computer Integrated Manufacturing Systems, 2019, 25(9): 2140-2148. doi: 10.13196/j.cims.2019.09.002
    [96] 桂宇飞,官威,陈标,等. 基于HHT算法与主轴功率信号的刀具磨损状态在线监测[J]. 机械设计与研究,2019,35(5): 63-69. doi: 10.13952/j.cnki.jofmdr.2019.0277

    GUI Yufei, GUAN Wei, CHEN Biao, et al. Online tool condition monitoring based on Hilbert-Huang transform and spidle power signal[J]. Machine Design and Research, 2019, 35(5): 63-69. doi: 10.13952/j.cnki.jofmdr.2019.0277
    [97] 乔石,刘阔,都书博,等. 基于功率信息的航空发动机叶片铣削刀具监测试验研究[J]. 航空制造技术,2021,64(16): 87-92,110. doi: 10.16080/j.issn1671-833x.2021.16.087

    QIAO Shi, LIU Kuo, DU Shubo, et al. Research on monitoring test of milling tool for aero-engine blade based on power information[J]. Aeronautical Manufacturing Technology, 2021, 64(16): 87-92,110. doi: 10.16080/j.issn1671-833x.2021.16.087
    [98] 王欣,强云玥. 铣刀在铣削加工中破损特征的识别方法研究[J]. 农业装备与车辆工程,2018,56(10): 65-70. doi: 10.3969/j.issn.1673-3142.2018.10.017

    WANG Xin, QIANG Yunyue. Identification method for milling cutter breakage features in milling process[J]. Agricultural Equipment and Vehicle Engineering, 2018, 56(10): 65-70. doi: 10.3969/j.issn.1673-3142.2018.10.017
    [99] 李宏坤,张孟哲,郝佰田,等. 基于切削电流系数的铣刀磨损状态监测[J]. 振动测试与诊断,2019,39(4): 713-719,900.

    LI Hongkun, ZHANG Mengzhe, HAO Baitian, et al. Monitoring milling cutter wear condition based on cutting current coefficients[J]. Journal of Vibration, Measurement and Diagnosis, 2019, 39(4): 713-719,900.
    [100] 李宏坤,郝佰田,代月帮,等. 基于压缩感知和加噪堆栈稀疏自编码器的铣刀磨损程度识别方法研究[J]. 机械工程学报,2019,55(14): 1-10. doi: 10.3901/JME.2019.14.001

    LI Hongkun, HAO Baitian, DAI Yuebang, et al. Wear status recognition for milling cutter based on compressed sensing and noise stacking sparse auto-encoder[J]. Journal of Mechanical Engineering, 2019, 55(14): 1-10. doi: 10.3901/JME.2019.14.001
    [101] OU J Y, LI H K, HUANG G J, et al. A novel order analysis and stacked sparse auto-encoder feature learning method for milling tool wear condition monitoring[J]. Sensors (Basel, Switzerland), 2020, 20(10): 2878-2891. doi: 10.3390/s20102878
    [102] SONG K Y, WANG M, LIU L M, et al. Intelligent recognition of milling cutter wear state with cutting parameter independence based on deep learning of spindle current clutter signal[J]. The International Journal of Advanced Manufacturing Technology, 2020, 109(3/4): 929-942.
    [103] 李斌,丁玉发,刘红奇. 小波包分析技术在电流刀具磨损监测系统中的应用[J]. 心智与计算,2010,4(4): 258-264. doi: 10.13706/j.cnki.xizh.2010.04.001

    LI Bin, DING Yufa, LIU Hongqi. Application of wavelet package analysis in tool wear monitoring system using current[J]. Mind and Computation, 2010, 4(4): 258-264. doi: 10.13706/j.cnki.xizh.2010.04.001
    [104] 乔培平. 基于电流信号刀具磨损状态的模糊模式识别[J]. 工具技术,2013,47(11): 73-74. doi: 10.3969/j.issn.1000-7008.2013.11.022

    QIAO Peiping. Tool wear state based on current signal of fuzzy pattern recongnition[J]. Tool Engineering, 2013, 47(11): 73-74. doi: 10.3969/j.issn.1000-7008.2013.11.022
    [105] KHAJAVI M N, NASERNIA E, ROSTAGHI M. Milling tool wear diagnosis by feed motor current signal using an artificial neural network[J]. Journal of Mechanical Science and Technology, 2016, 30(11): 4869-4875. doi: 10.1007/s12206-016-1005-9
    [106] 唐军,赵波,李文星. 基于遗传算法和BP神经网络的盘形成形铣刀磨损状态预测[J]. 河南理工大学学报(自然科学版),2017,36(5): 66-71. doi: 10.16186/j.cnki.1673-9787.2017.05.011

    TANG Jun, ZHAO Bo, LI Wenxing. Research on prediction tool of wear conditions of disk milling cutter based on genetic algorithm and BP neural network[J]. Journal of Henan Polytechnic University (Natural Science), 2017, 36(5): 66-71. doi: 10.16186/j.cnki.1673-9787.2017.05.011
    [107] TANG J, LI W X, ZHAO B. The application of GA-BP algorithm in prediction of tool wear state[J]. IOP Conference Series: Materials Science and Engineering, 2018, 398: 012025.1-012025.8.
    [108] 孙巍伟,黄民,李康. 基于电流信号的刀具磨损状态监测方法研究[J]. 河南理工大学学报(自然科学版),2019,38(6): 77-84,107. doi: 10.16186/j.cnki.1673-9787.2019.6.11

    SUN Weiwei, HUANG Min, LI Kang. Research on tool condition monitoring method based on current signal[J]. Journal of Henan Polytechnic University (Natural Science), 2019, 38(6): 77-84,107. doi: 10.16186/j.cnki.1673-9787.2019.6.11
    [109] 张小翠,徐小明. 一种基于变频器电流检测机床刀具磨损新方法的研究[J]. 机床与液压,2019,47(13): 213-218. doi: 10.3969/j.issn.1001-3881.2019.13.043

    ZHANG Xiaocui, XU Xiaoming. Research on new method of tool wear for machine tool based on frequency converter current detection[J]. Machine Tool and Hydraulics, 2019, 47(13): 213-218. doi: 10.3969/j.issn.1001-3881.2019.13.043
    [110] ZHOU Y Q, SUN W F. Tool wear condition monitoring in milling process based on current sensors[J]. IEEE Access, 2020, 8: 95491-95502.
    [111] 王民,刘利明,宋铠钰,等. 基于主轴驱动电流杂波的立铣刀复杂工况下磨损状态辨识[J]. 计算机集成制造系统,2021,27(12): 3429-3438. doi: 10.13196/j.cims.2021.12.005

    WANG Min, LIU Liming, SONG Kaiyu, et al. Wear status identification of end milling cutter under complex cutting conditions based on clutter signal of spindle current[J]. Computer Integrated Manufacturing Systems, 2021, 27(12): 3429-3438. doi: 10.13196/j.cims.2021.12.005
    [112] OU J Y, LI H K, HUANG G J. Intelligent analysis of tool wear state using stacked denoising autoencoder with online sequential-extreme learning machine[J]. Measurement, 2021, 167: 108153.1-108153.14.
    [113] VASHISHT R K, PENG Q J. Online chatter detection for milling operations using LSTM neural networks assisted by motor current signals of ball screw drives[J]. Journal of Manufacturing Science and Engineering, 2021, 143(1): 011008.1-011008.13.
    [114] HESSAINIA Z, BELBAH A, YALLESE M A. On the prediction of surface roughness in the hard turning based on cutting parameters and tool vibrations[J]. Measurement: Journal of the International Measurement Confederation, 2013, 46(5): 1671-1681. doi: 10.1016/j.measurement.2012.12.016
    [115] UPADHYAY V, JAIN P K, MEHTA N K. In-process prediction of surface roughness in turning of Ti-6Al-4V alloy using cutting parameters and vibration signals[J]. Measurement, 2013, 46(1): 154-160. doi: 10.1016/j.measurement.2012.06.002
    [116] SALGADO D R, ALONSO F J, CAMBERO I, et al. In-process surface roughness prediction system using cutting vibrations in turning[J]. The International Journal of Advanced Manufacturing Technology, 2009, 43(1/2): 40-51.
    [117] GARCÍA PLAZA E, NÚÑEZ P J, RODRÍGUEZ SALGADO D, et al. Contribution of surface finish monitoring signals in CNC taper turning[J]. Materials Science Forum, 2014, 797: 41-46. doi: 10.4028/www.scientific.net/MSF.797.41
    [118] KIRBY E D, CHEN J C. Development of a fuzzy-nets-based surface roughness prediction system in turning operations[J]. Computers and Industrial Engineering, 2007, 53(1): 30-42. doi: 10.1016/j.cie.2006.06.018
    [119] RISBOOD K A. Prediction of surface roughness and dimensional deviation by measuring cutting forces and vibrations in turning process[J]. Journal of Materials Processing Technology, 2003, 132(1/2/3): 203-214.
    [120] PLAZA E G, NÚÑEZ L P J. Surface roughness monitoring by singular spectrum analysis of vibration signals[J]. Mechanical Systems and Signal Processing, 2017, 84: 516-530. doi: 10.1016/j.ymssp.2016.06.039
    [121] SHI D F, GINDY N N. Tool wear predictive model based on least squares support vector machines[J]. Mechanical Systems and Signal Processing, 2007, 21(4): 1799-1814. doi: 10.1016/j.ymssp.2006.07.016
    [122] BHUIYAN M S H, CHOUDHURY I A, DAHARI M. Monitoring the tool wear, surface roughness and chip formation occurrences using multiple sensors in turning[J]. Journal of Manufacturing Systems, 2014, 33(4): 476-487. doi: 10.1016/j.jmsy.2014.04.005
    [123] WANG H, TO S, CHAN C Y. Investigation on the influence of tool-tip vibration on surface roughness and its representative measurement in ultra-precision diamond turning[J]. International Journal of Machine Tools and Manufacture, 2013, 69: 20-29. doi: 10.1016/j.ijmachtools.2013.02.006
    [124] MARINESCU I, AXINTE D. A time-frequency acoustic emission-based monitoring technique to identify workpiece surface malfunctions in milling with multiple teeth cutting simultaneously[J]. International Journal of Machine Tools and Manufacture, 2009, 49(1): 53-65. doi: 10.1016/j.ijmachtools.2008.08.002
    [125] REHORN A G, SEJDIĆ E, JIANG J. Fault diagnosis in machine tools using selective regional correlation[J]. Mechanical Systems and Signal Processing, 2006, 20(5): 1221-1238. doi: 10.1016/j.ymssp.2005.01.010
    [126] ZHU K P, WONG Y S, HONG G S. Wavelet analysis of sensor signals for tool condition monitoring: a review and some new results[J]. International Journal of Machine Tools and Manufacture, 2009, 49(7/8): 537-553.
    [127] LIN S C. A study on the effects of vibrations on the surface finish using a surface topography simulation model for turning[J]. International Journal of Machine Tools and Manufacture, 1998, 38(7): 763-782. doi: 10.1016/S0890-6955(97)00073-4
    [128] CHEUNG C F. A multi-spectrum analysis of surface roughness formation in ultra-precision machining[J]. Precision Engineering, 2000, 24(1): 77-87. doi: 10.1016/S0141-6359(99)00033-1
    [129] ABOUELATTA O B. Surface roughness prediction based on cutting parameters and tool vibrations in turning operations[J]. Journal of Materials Processing Technology, 2001, 118(1/2/3): 269-277.
    [130] ZHANG S J. A theoretical and experimental investigation into multimode tool vibration with surface generation in ultra-precision diamond turning[J]. International Journal of Machine Tools and Manufacture, 2013, 72: 32-36. doi: 10.1016/j.ijmachtools.2013.05.005
    [131] SHORE P, MORANTZ P, LUO X, et al. Big OptiX ultra precision grinding/measuring system[C]//Optical Systems Design 2005. Proc SPIE 5965, Optical Fabrication, Testing, and Metrology Ⅱ, Jena: [s.n.], 2005, 5965: 241-248.
    [132] FU S Y, MURALIKRISHNAN B, RAJA J. Engineering surface analysis with different wavelet bases[J]. Journal of Manufacturing Science and Engineering, 2003, 125(4): 844-852. doi: 10.1115/1.1616947
    [133] ABU-MAHFOUZ I, EL ARISS O, ESFAKUR RAHMAN A H M, et al. Surface roughness prediction as a classification problem using support vector machine[J]. The International Journal of Advanced Manufacturing Technology, 2017, 92(1/2/3/4): 803-815.
  • 加载中
图(9) / 表(4)
计量
  • 文章访问数:  807
  • HTML全文浏览量:  196
  • PDF下载量:  93
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-02-15
  • 修回日期:  2022-10-11
  • 网络出版日期:  2023-03-08
  • 刊出日期:  2022-10-13

目录

    /

    返回文章
    返回