• ISSN 0258-2724
  • CN 51-1277/U
  • EI Compendex
  • Scopus 收录
  • 全国中文核心期刊
  • 中国科技论文统计源期刊
  • 中国科学引文数据库来源期刊

频谱池化与混洗注意力增强的铁路异物轻量检测

陈永 王镇 张娇娇

陈永, 王镇, 张娇娇. 频谱池化与混洗注意力增强的铁路异物轻量检测[J]. 西南交通大学学报, 2024, 59(6): 1294-1304. doi: 10.3969/j.issn.0258-2724.20220074
引用本文: 陈永, 王镇, 张娇娇. 频谱池化与混洗注意力增强的铁路异物轻量检测[J]. 西南交通大学学报, 2024, 59(6): 1294-1304. doi: 10.3969/j.issn.0258-2724.20220074
CHEN Yong, WANG Zhen, ZHANG Jiaojiao. Lightweight Detection of Railway Object Intrusion Based on Spectral Pooling and Shuffled-Convolutional Block Attention Module Enhancement[J]. Journal of Southwest Jiaotong University, 2024, 59(6): 1294-1304. doi: 10.3969/j.issn.0258-2724.20220074
Citation: CHEN Yong, WANG Zhen, ZHANG Jiaojiao. Lightweight Detection of Railway Object Intrusion Based on Spectral Pooling and Shuffled-Convolutional Block Attention Module Enhancement[J]. Journal of Southwest Jiaotong University, 2024, 59(6): 1294-1304. doi: 10.3969/j.issn.0258-2724.20220074

频谱池化与混洗注意力增强的铁路异物轻量检测

doi: 10.3969/j.issn.0258-2724.20220074
基金项目: 国家自然科学基金项目(62462043,61963023)
详细信息
    作者简介:

    陈永(1979—),男,教授,博士,研究方向为计算机视觉与目标检测,E-mail:edukeylab@126.com

  • 中图分类号: TP391.4;TP183

Lightweight Detection of Railway Object Intrusion Based on Spectral Pooling and Shuffled-Convolutional Block Attention Module Enhancement

  • 摘要:

    针对红外弱光环境下铁路异物侵限检测时存在检测精度低、难以实现轻量化实时检测等问题,提出一种注意力增强的轻量化铁路异物检测方法. 首先,采用深度可分离卷积改进Darknet53特征提取网络,轻量化提取红外弱光场景下的铁路异物特征;其次,利用语义引导的红外频谱池化进行特征增强,提升红外图像下采样的特征质量;然后,提出混洗注意力机制(shuffled-convolutional block attention module, shuffled-CBAM),实现对关键红外目标的特征提取与融合,提高网络对红外目标检测的精度;最后,采用无锚框轻量化网络完成铁路异物侵限检测输出,克服锚框检测非极大值抑制操作实时性差的缺点,减小计算量的同时提高检测效率. 实验结果表明:所提轻量化模型具有较高检测精度,同较改进前模型尺寸减小179.01 MB,检测速率提升至39 帧/s,为YOLOv4方法的3.9倍;相较于对比检测方法,本文所提方法能够快速精确地检测出红外铁路异物.

     

  • 图 1  所提方法整体框架

    Figure 1.  Framework of proposed method

    图 2  深度可分离卷积结构

    Figure 2.  Depthwise separable convolution

    图 3  基于语义引导的红外频谱特征增强模块

    Figure 3.  Infrared spectral feature enhancement module based on semantic guidance

    图 4  红外特征图像下采样对比实验

    Figure 4.  Comparison experiments of infrared feature image downsampling

    图 5  通道混洗结构

    Figure 5.  Channel shuffle mechanism

    图 6  结合通道混洗的注意力机制结构

    Figure 6.  Shuffled-CBAM mechanism

    图 7  热力图可视化实验

    Figure 7.  Heat map visualization experiment

    图 8  红外近远景多目标侵限铁路实验

    Figure 8.  Infrared near and long-range railway multi-object intrusion detection experiment

    图 9  红外多类别异物侵限铁路实验

    Figure 9.  Infrared multi-category railway object intrusion experiment

    图 10  复杂场景下红外铁路异物侵限检测实验

    Figure 10.  Infrared railway object intrusion detection experiment in complex scenes

    表  1  不同异物检测方法性能对比

    Table  1.   Performance comparison of different object intrusion detection methods

    实验方法 模型大小/MB 平均检测
    精度/%
    FPS/(帧·s−1
    文献[10] 92.62 74.25 24
    文献[11] 244.26 82.62 10
    本文 42.49 80.25 39
    下载: 导出CSV

    表  2  所提方法分类性能实验

    Table  2.   Experiments on classification performance of proposed method

    异物种类 准确率/% 召回率/% F1-Score
    自行车 99.36 97.74 0.9854
    铁路 93.83 93.91 0.9387
    行人 83.16 83.67 0.8341
    卡车 76.45 79.26 0.7783
    汽车 77.86 77.21 0.7753
    石块 70.47 70.53 0.7050
    下载: 导出CSV

    表  3  模型计算量对比实验

    Table  3.   Comparative experiment of model calculation load

    实验方法 文献[10] 文献[11] 本文
    计算量 176.38 90.58 69.98
    下载: 导出CSV
  • [1] TIAN R L, SHI H M, GUO B Q, et al. Multi-scale object detection for high-speed railway clearance intrusion[J]. Applied Intelligence, 2022, 52(4): 3511-3526. doi: 10.1007/s10489-021-02534-9
    [2] CHEN J B, TALLEY J, KELLY K F. Infrared object classification with a hybrid optical convolution neural network[J]. Applied Optics, 2021, 60(25): G224-G231. doi: 10.1364/AO.427973
    [3] 刘可佳,马荣生,唐子木,等. 采用优化卷积神经网络的红外目标识别系统[J]. 光学精密工程,2021,29(4): 822-831. doi: 10.37188/OPE.20212904.0822

    LIU Kejia, MA Rongsheng, TANG Zimu, et al. Design of infrared target recognition system with optimized convolutional neural network[J]. Optics and Precision Engineering, 2021, 29(4): 822-831. doi: 10.37188/OPE.20212904.0822
    [4] LI Y S, LI Z Z, ZHANG C, et al. Infrared maritime dim small target detection based on spatiotemporal cues and directional morphological filtering[J]. Infrared Physics and Technology, 2021, 115: 103657.1-103657.19. doi: 10.1016/j.infrared.2021.103657
    [5] LI Q, NIE J Y, QU S C. A small target detection algorithm in infrared image by combining multi-response fusion and local contrast enhancement[J]. Optik, 2021, 241: 166919.1-166919.12. doi: 10.1016/j.ijleo.2021.166919
    [6] HAN J H, LIU C Y, LIU Y C, et al. Infrared small target detection utilizing the enhanced closest-mean background estimation[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2021, 14: 645-662. doi: 10.1109/JSTARS.2020.3038442
    [7] FAN M M, TIAN S Q, LIU K, et al. Infrared small target detection based on region proposal and CNN classifier[J]. Signal, Image and Video Processing, 2021, 15(8): 1927-1936. doi: 10.1007/s11760-021-01936-z
    [8] 李淼,林再平,樊建鹏,等. 基于深度时空卷积神经网络的点目标检测(英文)[J]. 红外与毫米波学报,2021,40(1): 122-132. doi: 10.11972/j.issn.1001-9014.2021.01.017

    LI Miao, LIN Zaiping, FAN Jianpeng, et al. Point target detection based on deep spatial-temporal convolution neural network[J]. Journal of Infrared and Millimeter Waves, 2021, 40(1): 122-132. doi: 10.11972/j.issn.1001-9014.2021.01.017
    [9] DU J M, LU H Z, HU M F, et al. CNN-based infrared dim small target detection algorithm using target-oriented shallow-deep features and effective small anchor[J]. IET Image Processing, 2021, 15(1): 1-15. doi: 10.1049/ipr2.12001
    [10] LI Y D, LIU Y, DONG H, et al. Intrusion detection of railway clearance from infrared images using generative adversarial networks[J]. Journal of Intelligent & Fuzzy Systems, 2021, 40(3): 3931-3943.
    [11] GUO F, QIAN Y, SHI Y F. Real-time railroad track components inspection based on the improved YOLOv4 framework[J]. Automation in Construction, 2021, 125: 1-15. doi: 10.1016/j.autcon.2021.103596
    [12] ZOU W, YIN G D, LIU H J, et al. Low-observable Target detection method for autonomous vehicles based on multi-modal feature fusion[J]. China Mechanical Engineering, 2021, 32(9): 1114-1125.
    [13] MENG L, SUN X Y, ZHAO B, et al. An identification method of high-speed railway sign based on convolutional neural network[J]. Acta Automatica Sinica, 2020, 46(3): 518-530.
    [14] 吴双忱,左峥嵘. 基于深度卷积神经网络的红外小目标检测[J]. 红外与毫米波学报,2019,38(3): 371-380. doi: 10.11972/j.issn.1001-9014.2019.03.019

    WU Shuangchen, ZUO Zhengrong. Small target detection in infrared images using deep convolutional neural networks[J]. Journal of Infrared and Millimeter Waves, 2019, 38(3): 371-380. doi: 10.11972/j.issn.1001-9014.2019.03.019
    [15] LI Y D, DONG H, LI H G, et al. Multi-block SSD based on small object detection for UAV railway scene surveillance[J]. Chinese Journal of Aeronautics, 2020, 33(6): 1747-1755. doi: 10.1016/j.cja.2020.02.024
    [16] HSIEH C C, LIN Y W, TSAI L H, et al. Offline deep-learning-based defective track fastener detection and inspection system[J]. Sensors and Materials, 2020, 32(10): 3429.1-3429.14. doi: 10.18494/SAM.2020.2921
    [17] LIU S W, YU L, ZHANG D K. An efficient method for high-speed railway dropper fault detection based on depthwise separable convolution[J]. IEEE Access, 2019, 7: 135678-135688. doi: 10.1109/ACCESS.2019.2942079
    [18] ZHOU A R, XIE W X, PEI J H. Background modeling in the Fourier domain for maritime infrared target detection[J]. IEEE Transactions on Circuits and Systems for Video Technology, 2020, 30(8): 2634-2649. doi: 10.1109/TCSVT.2019.2922036
    [19] 李恒超,刘香莲,刘鹏,等. 基于多尺度感知的密集人群计数网络[J]. 西南交通大学学报,2024,59(5): 1176-1183,1214. doi: 10.3969/j.issn.0258-2724.20220823

    LI Hengchao , LIU Xianglian , LIU Peng , et al. Dense crowd counting network based on multi-scale perception[J]. Journal of Southwest Jiaotong University, 2024, 59(5): 1176-1183,1214. doi: 10.3969/j.issn.0258-2724.20220823
    [20] YANG K, CHANG S L, TIAN Z X, et al. Automatic polyp detection and segmentation using shuffle efficient channel attention network[J]. Alexandria Engineering Journal, 2022, 61(1): 917-926. doi: 10.1016/j.aej.2021.04.072
    [21] CHEN Y W, SONG B, ZENG Y, et al. A deep learning-based approach for fault diagnosis of current-carrying ring in catenary system[J]. Neural Computing and Applications, 2023, 35(33): 23725-23737. doi: 10.1007/s00521-021-06280-4
    [22] ZHOU X, WANG D, KRAHENBUHL P. Objects as points[J]. Applied Physics Reviews, 2019, 1904: 07850.1-07850.12.
  • 加载中
图(10) / 表(3)
计量
  • 文章访问数:  75
  • HTML全文浏览量:  30
  • PDF下载量:  8
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-01-24
  • 修回日期:  2022-08-22
  • 网络出版日期:  2024-09-21
  • 刊出日期:  2022-08-29

目录

    /

    返回文章
    返回