Damage Analysis of Long-Span Continuous Beam Bridges Under Strong Earthquakes
-
摘要:
连续梁桥结构常因地震发生损伤甚至倒塌而失去交通作用,研究强震下大跨度连续梁桥的损伤破坏机制对提高桥梁抗倒塌性能具有重要意义. 基于有限元软件ANSYS/LS-DYNA,考虑桥墩材料非线性、损伤过程大变形非线性以及梁端非线性碰撞,建立大跨度连续梁桥在强震作用下的损伤三维数值模型,进行非线性分析,直观模拟大跨度连续梁桥在强震作用下的损伤破坏过程,从连续梁桥的应变与位移响应、桥墩损伤和梁-台间碰撞作用等方面分析了大跨度连续梁桥的地震损伤情况. 研究结果表明:单向地震动输入与双向地震动输入作用下破坏模式基本一致,破坏模式由桥梁结构本身决定,地震动输入方式影响较小;大跨度连续梁桥的地震损伤是逐渐发展的过程,桥墩混凝土损伤因子不断累积达到0.99,固定墩底部发生受弯塑性破坏,桥梁发生损伤破坏.
Abstract:The continuous beam bridge is often damaged or even collapses due to the earthquake and thus loses its traffic function. Therefore, it is important to study the damage mechanism of large-span continuous beam bridges under strong earthquakes to improve the bridge collapse resistance. Based on the finite element software ANSYS/LS-DYNA, a three-dimensional numerical model of the damage of a large-span continuous beam bridge under strong earthquakes was established, which considered the material nonlinearity of the bridge pier, the large deformation nonlinearity of the damage process, and the nonlinear collision of the beam end. In addition, nonlinear analysis was performed to visually simulate the damage process of the large-span continuous beam bridge under strong earthquakes. The seismic damage of the large-span continuous beam bridge was analyzed in terms of strain and displacement response, pier damage, and girder-platform collision. The study results show that the damage modes of the one-way ground motion input and two-way ground motion input are basically the same, and the damage mode is determined by the bridge structure, and the ground motion input mode has less influence; the seismic damage of the large-span continuous beam bridge involves a gradual development process; the concrete damage factor of the bridge pier accumulates to 0.99; the bending plastic damage occurs at the bottom of the fixed pier, and the bridge is damaged.
-
Key words:
- long-span continuous beam bridges /
- earthquake effect /
- failure mode /
- damage analysis /
- pier damage
-
表 1 混凝土模型部分参数
Table 1. Partial parameters of concrete model
参数 等级 密度/
(kg·m−3)抗压强度/
GPa骨料
直径/m侵蚀破坏
参数取值 C50 2400 50 0.02 1.1 表 2 钢筋模型部分参数
Table 2. Partial parameters of steel bar model
参数 泊松比 密度/
( kg·m−3)屈服应力/
GPa弹性模量/
GPa失效应变 取值 0.3 7800 400 200000 0.12 表 3 桥梁动力特性
Table 3. Bridge dynamic characteristics
阶数 频率/Hz 振型特点 1 1.55 主梁第 1 阶纵向振动 2 2.82 主梁第 1 阶横向振动 3 3.02 主梁第 2 阶横向振动 4 3.53 主梁跨中横向振动 5 3.61 主梁第 1 阶竖向振动 6 4.80 主梁第 2 阶纵向振动 7 5.84 主梁第 1 阶反对称横向振动 8 7.70 主缆第 1 阶对称横向振动 9 7.74 主梁第 1 阶反对称竖向振动 10 8.38 主梁第 1 阶对称竖向振动 -
[1] 游四方,郑史雄,贾宏宇,等. 地震作用下简支梁桥纵向碰撞模拟[J]. 铁道标准设计,2020,64(12): 59-66.YOU Sifang, ZHENG Shixiong, JIA Hongyu, et al. Longitudinal colliding simulation of simply supported beam bridges under ground motions[J]. Railway Standard Design, 2020, 64(12): 59-66. [2] 刘磊,赵东升,朱瑜,等. 1993—2017年我国大陆地震灾害损失的时空特征[J]. 自然灾害学报,2021,30(3): 14-23.LIU Lei, ZHAO Dongsheng, ZHU Yu, et al. Spatiotemporal characteristics of earthquake hazard losses in mainland China during 1993−2017[J]. Journal of Natural Disasters, 2021, 30(3): 14-23. [3] HAO H, TANG E K C. Numerical simulation of a cable-stayed bridge response to blast loads, partⅡ: damage prediction and FRP strengthening[J]. Engineering Structures., 2010, 32(10): 3193-3205. doi: 10.1016/j.engstruct.2010.06.006 [4] 谢文,孙利民. 采用耗能辅助墩的超大跨斜拉桥顺桥向地震损伤控制[J]. 中南大学学报(自然科学版),2013,44(11): 4672-4681.XIE Wei, SUN Limin. Seismic damage control of long span cable-stayed bridges by supporting piers with energy dissipating in longitudinal direction[J]. Journal of Central South University (Science and Technology), 2013, 44(11): 4672-4681. [5] 仇清良,仇步云. 强震作用下大跨度连续梁桥的倒塌破坏研究[J]. 工程抗震与加固改造,2014,36(1): 57-60,134.QIU Qingliang, QIU Buyun. Study on the collapse and failure of long-span continuous beam bridge under strong earthquake[J]. Earthquake Resistant Engineering and Retrofitting, 2014, 36(1): 57-60,134. [6] 黎雅乐,宗周红,黄学漾,等. 强震下钢筋混凝土连续梁桥非线性动力响应分析[J]. 东南大学学报(自然科学版),2016,46(6): 1271-1277.LI Yale, ZONG Zhouhong, HUANG Xueyang, et al. Nonlinear dynamic response analysis of reinforced concrete continuous girder bridge under strong earthquake excitations[J]. Journal of Southeast University (Natural Science Edition), 2016, 46(6): 1271-1277. [7] 左烨,孙广俊,李鸿晶. 混凝土梁桥地震倒塌失效机制[J]. 南京工业大学学报(自然科学版),2018,40(3): 73-80,104.ZUO Ye, SUN Guangjun, LI Hongjing. Failure mechanism of concrete girder bridges collapse during earthquakes[J]. Journal of Nanjing University of Technology (Natural Science Edition), 2018, 40(3): 73-80,104. [8] 王学伟. 公铁两用斜拉桥强地震作用下的连续倒塌过程数值模拟[J]. 西南公路,2018,147(3): 143-148. [9] 黎雅乐,宗周红,黄学漾,等. 基于倒塌分析的连续梁桥地震损伤评估方法[J]. 振动. 测试与诊断,2019,39(4): 867-874,911.LI Yale, ZONG Zhouhong, HUANG Xueyang, et al. Collapse analysis-based seismic damage evaluation of continuous girder bridge[J]. Journal of Vibration, Measurement & Diagnosis, 2019, 39(4): 867-874,911. [10] 陈敬一,杜修力,韩强,等. 摇摆双层桥梁地震反应及抗倒塌能力分析[J]. 工程力学,2020,37(10): 56-69.CHEN Jingyi, DU Xiuli, HAN Qiang, et al. Analysis of seismic response and overturning resistance of rocking double-deck bridge system[J]. Engineering Mechanics, 2020, 37(10): 56-69. [11] 周艳,张雷明,刘西拉. 美国Cypress高架桥地震倒塌的仿真分析[J]. 岩石力学与工程学报,2005,24(17): 3035-3044.ZHOU Yan, ZHANG Leiming, LIU Xila. Collapse simulation and analysis of Cypress viaduct during Loma Prieta earthquake[J]. Chinese Journal of Rock Mechanics and Engineering, 2005, 24(17): 3035-3044. [12] 徐俊祥,刘西拉. 地裂时桥梁倒塌过程研究[J]. 中国铁道科学,2008,29(1): 17-21.XU Junxiang, LIU Xila. Study on bridge collapse resulting from fault rupture[J]. China Railway Science, 2008, 29(1): 17-21. [13] JOHNSON N, RANF R T, SAIIDI M S, et al. Seismic testing of a two-span reinforced concrete bridge[J]. Journal of Bridge Engineering, 2008, 13(2): 173-182. doi: 10.1061/(ASCE)1084-0702(2008)13:2(173) [14] MURRAY Y D, LEWIS B A. Numerical simulation of damage in concrete[R]. Colorado Springs: APTEK, Inc., 1995. [15] SIMO J C, JU J W. Strain-and stress-based continuum damage models—I. formulation[J]. International Journal of Solids and Structures, 1987, 23(7): 821-840. doi: 10.1016/0020-7683(87)90083-7 [16] MURRAY Y D. Users manual for LS-DYNA concrete material model 159, FHWA-HRT-05-062[R]. Colorado Springs: APTEK, Inc., 2007. [17] BRUGGI M. Generating strut-and-tie patterns for reinforced concrete structures using topology optimization[J]. Computers & Structures, 2009, 87(23/24): 1483-1495. [18] Livermore Software Technology Corporation. LS-DYNA theory manual[M]. Livermore: Livermore Software Technology Corporation, 2019. [19] 张沧海. 大跨度桥梁多向多点激励地震反应分析[D]. 哈尔滨: 中国地震局工程力学研究所, 2011. [20] MUTHUKUMAR S, DESROCHES R. A Hertz contact model with non-linear damping for pounding simulation[J]. Earthquake Engineering & Structural Dynamics, 2006, 35(7): 811-828. 期刊类型引用(17)
1. 王卫东,高文生,龚维明,林毅峰,刘永超,吴江斌. 基础工程技术的发展与创新. 土木工程学报. 2025(02): 97-117 . 百度学术
2. 贺蔚,周红星,秦杭晓,曾庆林,张健,徐辉. 高雷诺数下倒虹吸闸墩绕流水力特性. 水电能源科学. 2024(04): 155-159 . 百度学术
3. 吴少玲,孔词. 北坑水库泄洪对下游高速公路大桥桥墩的影响分析. 安徽水利水电职业技术学院学报. 2024(06): 12-17+23 . 百度学术
4. 胡邵凯,杨万里,边莉,王浩,孔德祥,赵晋平. 基于混凝土塑性损伤模型的桥墩在快速水流作用下的损伤分析. 交通运输研究. 2023(01): 143-152 . 百度学术
5. 郑建,贾宏宇,吴炜昌,程维,邹作家,郑史雄. 急流冲击下大跨度连续刚构桥动力响应分析. 铁道标准设计. 2023(03): 121-125 . 百度学术
6. 吴春利,黄诗茗,李魁,顾正伟,黄晓明,张炳涛,杨润超. 基于数值仿真和统计分析的洪水作用下桥墩作用效应分析. 吉林大学学报(工学版). 2023(06): 1612-1620 . 百度学术
7. 杨光,冀楠,舒麟棹,钱志鹏,万德成. 防撞浮箱对桥墩绕流影响的数值研究. 水动力学研究与进展A辑. 2023(04): 528-534 . 百度学术
8. 卞晨杰,杜礼明,王尕平,于德壮. 风-浪-流耦合作用下跨海斜拉桥涡动力特性. 中国科技论文. 2023(10): 1128-1136 . 百度学术
9. 杨万理,秦军武,侯海林,吴文博,周凌远. 竹巴龙金沙江大桥水毁破坏机理. 西南交通大学学报. 2022(01): 120-128 . 本站查看
10. 刘洋,徐毅,王茂枚,赵钢,王远. 方形桥墩紊动特性及尾涡区尺寸PIV试验. 水利水电科技进展. 2022(04): 55-60 . 百度学术
11. 华旭刚,邓武鹏,陈政清,唐煜. 水流作用下双圆柱墩混凝土梁桥的动力响应实测与数值模拟. 工程力学. 2021(01): 40-51 . 百度学术
12. 陈星宇,徐昕宇,郑晓龙,曾永平,李永乐. 中央开槽宽度对箱梁涡振特性的影响机理. 西南交通大学学报. 2021(02): 238-245 . 本站查看
13. 郭辉,王明慧,李开兰,蒋树平,周勤. 复杂河道环境内水流冲击桥墩的数值模拟——以广安五福桥为例. 科学技术与工程. 2021(30): 13086-13094 . 百度学术
14. 魏凯,秦顺全,赵文玉,祝兵,徐国际. 桥梁水动力学2020年度研究进展. 土木与环境工程学报(中英文). 2021(S1): 31-42 . 百度学术
15. 陈一路,王贵. 基于通信特征分析的智能桥梁防撞偏航预警系统. 西安工程大学学报. 2021(06): 83-89 . 百度学术
16. 吴承伟,杨万理,王广俊. 错置双柱式桥墩三维流场及水流力特征研究. 水动力学研究与进展(A辑). 2020(03): 328-337 . 百度学术
17. 武守信,何亚东,江昕宇. 桥梁基础工程2019年度研究进展. 土木与环境工程学报(中英文). 2020(05): 159-167 . 百度学术
其他类型引用(22)
-